File size: 1,245 Bytes
8549fc8
d92c1fd
 
 
 
 
18fd7e3
d92c1fd
 
 
 
 
 
 
 
 
18fd7e3
 
 
 
 
 
 
 
 
 
 
d92c1fd
 
 
 
 
18fd7e3
 
 
 
542c148
d92c1fd
18fd7e3
 
 
 
d92c1fd
18fd7e3
 
542c148
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
import requests
import os
TK = os.environ['HF_TOKEN']
API_URL = "https://api-inference.huggingface.co/models/gowtham58/T_TL"
headers = {"Authorization": f"Bearer {TK}"}

def get_output(text):
	response = requests.post(API_URL, headers=headers, json={"inputs": text,})
	response = response.json()
	#print(response)
	while response[0]=='error':
		response = requests.post(API_URL, headers=headers, json={"inputs": text,})
		response = response.json()
	
	return response[0]['generated_text']

description = """TRANSLITERATE is to represent or spell in the characters of another alphabet. Normally we create tamil words using English Characters
in our daily text conversations. This Model can generate the words in tamil given a transliterated tamil word in english"""
css = """
h1 {
    text-align: center;
    display:block;
}
p {
    text-align: center;
    display:block;
}
.contain {
  max-width: 900px;
  margin: auto;
  padding-top: 1.5rem;
}

"""

app = gr.Interface(
    fn=get_output,
    inputs="textbox",
    outputs="text",
    title="Tamil Transliteraion",
    description=description,
    examples=[["Hello, Nanba epdi iruka"], ["Naa Ready dha varava"]],
    css = css, 
    allow_flagging="never",
)
app.launch()