File size: 1,492 Bytes
f89ff5d
 
 
 
 
 
 
 
 
 
 
 
 
 
25d41dc
f89ff5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe32c2a
f89ff5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

import streamlit as st
from torchvision import transforms
import torch
import PIL
from streamlit_image_select import image_select

#Transforming the Input Image
img_transform = transforms.Compose([
    transforms.Resize((224, 224)), 
    transforms.ToTensor(), 
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), 
])
#Loading the model
model = torch.load("model/MobileNet_v3.pt", map_location=torch.device('cpu'))
model.eval()

#Mushroom Classes
classes = ['Boletus', 'Lactarius', 'Russula']

#Function that returns the type of Mushrooom
def get_type(image):
    image = PIL.Image.open(image)
    image = img_transform(image)
    image = torch.unsqueeze(image, 0)
    out = model(image)
    ans = classes[out.argmax(-1)[0]]
    return "The Mushrooom Type is "+ans

st.title("Mushroom Classifier")
st.text("Upload your Image and find the category of mushroom it belongs to")

#Sidebar to upload and select Images
with st.sidebar:
    usr_img = st.file_uploader("Upload the Mushroom Image")
    c = st.container()
    img = image_select(label="Select From Examples",
                        images=['samples/Russula.jpg','samples/Boletus.jpg','samples/Lactarius.jpg'],
                        captions=["Russula", "Boletus", "Lactarius"],)
#Displaying Image
if usr_img:
    st.image(usr_img, width=500)
else:
    st.image(img, width=500)

#Button to Classify
if st.button("Classify"):
    text = get_type(usr_img if usr_img else img)
    st.text(text)