File size: 1,639 Bytes
f89ff5d 18f38c4 f89ff5d 738757c f89ff5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import streamlit as st
from torchvision import transforms
import torch
import PIL
from streamlit_image_select import image_select
import pathlib
import platform
plt = platform.system()
if plt == 'Linux':
pathlib.WindowsPath = pathlib.PosixPath
#Transforming the Input Image
img_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
#Loading the model
model_pth = Path("model\MobileNet_v3.pt")
model = torch.load(model_pth, map_location=torch.device('cpu'))
model.eval()
#Mushroom Classes
classes = ['Boletus', 'Lactarius', 'Russula']
#Function that returns the type of Mushrooom
def get_type(image):
image = PIL.Image.open(image)
image = img_transform(image)
image = torch.unsqueeze(image, 0)
out = model(image)
ans = classes[out.argmax(-1)[0]]
return "The Mushrooom Type is "+ans
st.title("Mushroom Classifier")
st.text("Upload your Image and find the category of mushroom it belongs to")
#Sidebar to upload and select Images
with st.sidebar:
usr_img = st.file_uploader("Upload the Mushroom Image")
c = st.container()
img = image_select(label="Select From Examples",
images=['samples\Russula.jpg','samples\Boletus.jpg','samples\Lactarius.jpg'],
captions=["Russula", "Boletus", "Lactarius"],)
#Displaying Image
if usr_img:
st.image(usr_img, width=500)
else:
st.image(img, width=500)
#Button to Classify
if st.button("Classify"):
text = get_type(usr_img if usr_img else img)
st.text(text)
|