import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter import os from langchain_community.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate from dotenv import load_dotenv from langchain_openai import OpenAI, ChatOpenAI from langchain_openai import OpenAIEmbeddings load_dotenv() os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"] os.environ["LANGCHAIN_TRACING_V2"]="true" os.environ["LANGCHAIN_API_KEY"] = st.secrets["LANGCHAIN_API_KEY"] def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: try: page_text = page.extract_text() if page_text: text += page_text except Exception as e: print(f"Error reading page: {e}") return text def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=2500, chunk_overlap=750) chunks = text_splitter.split_text(text) return chunks def get_vector_store(text_chunks): vector_store = FAISS.from_texts(text_chunks, OpenAIEmbeddings()) vector_store.save_local("faiss_index") def get_conversational_chain(): prompt_template = """You are an assistant for teachers. Your objective is to provide comprehensive and accurate responses based on the context provided. Make sure that you generate whole output. context: {context} question: {question} """ model = ChatOpenAI(model="gpt-3.5-turbo") prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) return chain def user_input(user_question): embeddings = OpenAIEmbeddings() new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) docs = new_db.similarity_search(user_question) chain = get_conversational_chain() result = "" with st.spinner("Processing..."): response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True) result = response["output_text"] st.session_state.chat_history.append({"role": "assistant", "content": result}) def main(): st.set_page_config("Chat PDF") st.header("AI-powered EduPlanner💁") if "chat_history" not in st.session_state: st.session_state.chat_history = [] with st.sidebar: #st.image("pic123.png") st.title("Menu:") pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True) if st.button("Submit & Process"): if pdf_docs: with st.spinner("Processing..."): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) get_vector_store(text_chunks) st.success("Done") else: st.warning("Please upload PDF files first before submitting.") # Display chat history for idx, chat in enumerate(st.session_state.chat_history): with st.chat_message(chat["role"]): st.write(chat["content"]) if chat["role"] == "assistant": st.download_button( label="Download", data=chat["content"], file_name=f"response_{idx}.txt", mime="text/plain", key=f"download_{idx}", ) user_question = st.chat_input("Ask a Question from the PDF Files") if user_question: if not pdf_docs: st.warning("Please upload PDF files and process first before asking questions.") else: st.session_state.chat_history.append({"role": "user", "content": user_question}) st.chat_message("user").write(user_question) user_input(user_question) st.experimental_rerun() if __name__ == "__main__": main()