File size: 7,253 Bytes
140efa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c40d27f
140efa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bce163
140efa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bce163
140efa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bce163
140efa3
 
 
 
8bce163
 
 
c40d27f
140efa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53ce711
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import argparse
import os
import random

import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr
import argparse
import torch

from llava.constants import (
    IMAGE_TOKEN_INDEX,
    DEFAULT_IMAGE_TOKEN,
    DEFAULT_IM_START_TOKEN,
    DEFAULT_IM_END_TOKEN,
    IMAGE_PLACEHOLDER,
)
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import (
    process_images,
    tokenizer_image_token,
    get_model_name_from_path,
)

from PIL import Image

import requests
from PIL import Image
from io import BytesIO
import re

from llava.chat import Chat, conv_llava_v1

# imports modules for registration

def parse_args():
    parser = argparse.ArgumentParser(description="Demo")
    parser.add_argument("--model-path", type=str, default="mqt_llava_weight")
    parser.add_argument("--model-base", type=str, default=None)
    # parser.add_argument("--image-file", type=str, required=True)
    # parser.add_argument("--query", type=str, required=True)
    parser.add_argument("--conv-mode", type=str, default='llava_v1')
    parser.add_argument("--sep", type=str, default=",")
    parser.add_argument("--temperature", type=float, default=0)
    parser.add_argument("--top_p", type=float, default=None)
    parser.add_argument("--num_beams", type=int, default=1)
    parser.add_argument("--max_new_tokens", type=int, default=512)
    parser.add_argument("--num-visual-tokens", type=int, default=256)
    parser.add_argument("--gpu-id", type=int, default=0)
    args = parser.parse_args()
    return args

# ========================================
#             Model Initialization
# ========================================

print('Initializing Chat')
args = parse_args()

if torch.cuda.is_available():
    device='cuda:{}'.format(args.gpu_id)
else:
    device=torch.device('cpu')

disable_torch_init()

model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(
    args.model_path, args.model_base, model_name, device_map=device, device=device
)

# vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
# vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, tokenizer, image_processor, args, device=device)
print('Initialization Finished')

# ========================================
#             Gradio Setting
# ========================================

def gradio_reset(chat_state, img_list):
    if chat_state is not None:
        chat_state.messages = []
    if img_list is not None:
        img_list = []
    return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list

def upload_img(gr_img, text_input, chat_state):
    if gr_img is None:
        return None, None, gr.update(interactive=True), chat_state, None
    chat_state = conv_llava_v1.copy()   #CONV_VISION.copy()
    img_list = []
    llm_message = chat.upload_img(gr_img, chat_state, img_list)
    return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list

def gradio_ask(user_message, chatbot, chat_state):
    if len(user_message) == 0:
        return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
    chat.ask(user_message, chat_state)
    chatbot = chatbot + [[user_message, None]]
    return '', chatbot, chat_state


def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature, num_visual_tokens):
    llm_message = chat.answer(conv=chat_state,
                              img_list=img_list,
                              num_beams=num_beams,
                              temperature=temperature,
                              num_visual_tokens=num_visual_tokens,
                              )  #[0]
    chatbot[-1][1] = llm_message[0]
    return chatbot, chat_state, img_list

title = """<h1 align="center">Demo of MQT-LLaVA</h1>"""
description = """<h3>This is the demo of MQT-LLaVA. Upload your images and start chatting! <br> To use 
            example questions, click example image, hit upload & start chat, and press enter on your keyboard in the chatbox.
            <br> Due to limited memory constraint, we only support single turn conversation. To ask multiple questions, hit Restart and upload your image! </h3>"""
article = """<p><a href='https://gordonhu608.github.io/mqt-llava/'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p><a href='https://github.com/gordonhu608/MQT-LLaVA'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p><a href='https://arxiv.org/abs/'><img src='https://img.shields.io/badge/Paper-ArXiv-red'></a></p>
"""

#TODO show examples below

with gr.Blocks() as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown(article)

    with gr.Row():
        with gr.Column(scale=0.5):
            image = gr.Image(type="pil")
            upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
            clear = gr.Button("Restart 🔄")
            
            num_visual_tokens = gr.Slider(
                minimum=1,
                maximum=256,
                value=256,
                step=1,
                interactive=True,
                label="Number of visual tokens",
            )
                                    
            temperature = gr.Slider(
                minimum=0.1,
                maximum=2.0,
                value=1.0,
                step=0.1,
                interactive=True,
                label="Temperature",
            )
            
            num_beams = gr.Slider(
                minimum=1,
                maximum=10,
                value=5,
                step=1,
                interactive=True,
                label="beam search numbers",
            )


        with gr.Column():
            chat_state = gr.State()
            img_list = gr.State()
            chatbot = gr.Chatbot(label='MQT-LLaVA')
            text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False)
            
            gr.Examples(examples=[
                [f"images/extreme_ironing.jpg", "What is unusual about this image?"],
                [f"images/waterview.jpg", "What are the things I should be cautious about when I visit here?"],
            ], inputs=[image, text_input])          
            
    upload_button.click(upload_img, [image, text_input, chat_state], [image, text_input, upload_button, chat_state, img_list])
    
    text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
        gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature, num_visual_tokens], [chatbot, chat_state, img_list]
    )
    clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list], queue=False)

demo.launch()