import numpy as np
import PIL.Image as Image
import tensorflow as tf
import streamlit as st
from streamlit_extras.add_vertical_space import add_vertical_space
from warnings import filterwarnings
filterwarnings('ignore')
def streamlit_config():
# page configuration
st.set_page_config(page_title='Classification', layout='centered')
# page header transparent color
page_background_color = """
"""
st.markdown(page_background_color, unsafe_allow_html=True)
# title and position
st.markdown(f'
Potato Disease Classification
',
unsafe_allow_html=True)
add_vertical_space(4)
# Streamlit Configuration Setup
streamlit_config()
def prediction(image_path, class_names=['Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy']):
img = Image.open(image_path)
img_resized = img.resize((256,256))
img_array = tf.keras.preprocessing.image.img_to_array(img_resized)
img_array = np.expand_dims(img_array, axis=0)
model = tf.keras.models.load_model('model.h5')
prediction = model.predict(img_array)
predicted_class = class_names[np.argmax(prediction)]
confidence = round(np.max(prediction)*100, 2)
add_vertical_space(1)
st.markdown(f'Predicted Class : {predicted_class}
Confidence : {confidence}%',
unsafe_allow_html=True)
add_vertical_space(1)
st.image(img.resize((400,300)))
col1,col2,col3 = st.columns([0.1,0.9,0.1])
with col2:
input_image = st.file_uploader(label='Upload the Image', type=['jpg', 'jpeg', 'png'])
if input_image is not None:
col1,col2,col3 = st.columns([0.2,0.8,0.2])
with col2:
prediction(input_image)