Spaces:
Running
on
L40S
Running
on
L40S
RyanMullins
commited on
Commit
•
d19a19a
1
Parent(s):
b22b950
Fixing nonlocal assignment
Browse files
app.py
CHANGED
@@ -24,7 +24,7 @@ _PROMPTS: tuple[str] = (
|
|
24 |
_TORCH_DEVICE = (
|
25 |
torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
|
26 |
)
|
27 |
-
_ANSWERS = []
|
28 |
|
29 |
_WATERMARK_CONFIG_DICT = dict(
|
30 |
ngram_len=5,
|
@@ -116,7 +116,7 @@ def generate_outputs(
|
|
116 |
|
117 |
with gr.Blocks() as demo:
|
118 |
gr.Markdown(
|
119 |
-
|
120 |
# Using SynthID Text in your Genreative AI projects
|
121 |
|
122 |
[SynthID][synthid] is a Google DeepMind technology that watermarks and
|
@@ -156,12 +156,18 @@ with gr.Blocks() as demo:
|
|
156 |
configuration values affect performance.
|
157 |
|
158 |
Watermarks are [configured][synthid-hf-config] to parameterize the
|
159 |
-
_g_-function and how it is applied during generation.
|
160 |
-
configuration for all demos. It should not be used for any
|
161 |
-
purposes.
|
162 |
|
163 |
```json
|
164 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
```
|
166 |
|
167 |
Watermarks are applied by initializing a `SynthIDTextWatermarkingConfig`
|
@@ -297,6 +303,7 @@ with gr.Blocks() as demo:
|
|
297 |
reset_btn = gr.Button('Reset', visible=False)
|
298 |
|
299 |
def generate(*prompts):
|
|
|
300 |
standard, standard_detector = generate_outputs(prompts=prompts)
|
301 |
watermarked, watermarked_detector = generate_outputs(
|
302 |
prompts=prompts,
|
@@ -313,10 +320,16 @@ with gr.Blocks() as demo:
|
|
313 |
else:
|
314 |
return 'Not watermarked'
|
315 |
|
316 |
-
responses = [
|
317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
random.shuffle(responses)
|
319 |
-
_ANSWERS
|
320 |
|
321 |
# Load model
|
322 |
return {
|
@@ -370,6 +383,8 @@ with gr.Blocks() as demo:
|
|
370 |
)
|
371 |
|
372 |
def reset():
|
|
|
|
|
373 |
return {
|
374 |
generations_col: gr.Column(visible=False),
|
375 |
detections_col: gr.Column(visible=False),
|
|
|
24 |
_TORCH_DEVICE = (
|
25 |
torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
|
26 |
)
|
27 |
+
_ANSWERS: list[tuple[str, str]] = []
|
28 |
|
29 |
_WATERMARK_CONFIG_DICT = dict(
|
30 |
ngram_len=5,
|
|
|
116 |
|
117 |
with gr.Blocks() as demo:
|
118 |
gr.Markdown(
|
119 |
+
'''
|
120 |
# Using SynthID Text in your Genreative AI projects
|
121 |
|
122 |
[SynthID][synthid] is a Google DeepMind technology that watermarks and
|
|
|
156 |
configuration values affect performance.
|
157 |
|
158 |
Watermarks are [configured][synthid-hf-config] to parameterize the
|
159 |
+
_g_-function and how it is applied during generation. The following
|
160 |
+
configuration is used for all demos. It should not be used for any
|
161 |
+
production purposes.
|
162 |
|
163 |
```json
|
164 |
+
{
|
165 |
+
"ngram_len": 5,
|
166 |
+
"keys": [654, 400, 836, 123, 340, 443, 597, 160, 57,29, 590, 639, 13,715, 468, 990, 966, 226, 324, 585, 118, 504, 421, 521, 129, 669, 732, 225, 90, 960],
|
167 |
+
"sampling_table_size": 65536,
|
168 |
+
"sampling_table_seed": 0,
|
169 |
+
"context_history_size": 1024
|
170 |
+
}
|
171 |
```
|
172 |
|
173 |
Watermarks are applied by initializing a `SynthIDTextWatermarkingConfig`
|
|
|
303 |
reset_btn = gr.Button('Reset', visible=False)
|
304 |
|
305 |
def generate(*prompts):
|
306 |
+
prompts = [p for p in prompts if p]
|
307 |
standard, standard_detector = generate_outputs(prompts=prompts)
|
308 |
watermarked, watermarked_detector = generate_outputs(
|
309 |
prompts=prompts,
|
|
|
320 |
else:
|
321 |
return 'Not watermarked'
|
322 |
|
323 |
+
responses = [
|
324 |
+
(text, decision(score))
|
325 |
+
for text, score in zip(standard, standard_detector[0])
|
326 |
+
]
|
327 |
+
responses += [
|
328 |
+
(text, decision(score))
|
329 |
+
for text, score in zip(watermarked, watermarked_detector[0])
|
330 |
+
]
|
331 |
random.shuffle(responses)
|
332 |
+
_ANSWERS.extend(responses)
|
333 |
|
334 |
# Load model
|
335 |
return {
|
|
|
383 |
)
|
384 |
|
385 |
def reset():
|
386 |
+
_ANSWERS.clear()
|
387 |
+
|
388 |
return {
|
389 |
generations_col: gr.Column(visible=False),
|
390 |
detections_col: gr.Column(visible=False),
|