Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,449 Bytes
c7b13d5 90da0e7 f03bfaf 90da0e7 f03bfaf 90da0e7 f03bfaf 90da0e7 f03bfaf 331f30a 29f3401 dff35d4 f03bfaf dff35d4 f03bfaf dff35d4 f03bfaf dff35d4 f03bfaf c259892 f03bfaf 0f4b6ed dff35d4 c259892 f03bfaf dff35d4 0f4b6ed f03bfaf 0f4b6ed f03bfaf dff35d4 f03bfaf c259892 94b54b7 f03bfaf 90da0e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import spaces
import os
import torch
import random
from huggingface_hub import snapshot_download
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from diffusers import UNet2DConditionModel, AutoencoderKL
from diffusers import EulerDiscreteScheduler
import gradio as gr
# Download the model files
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
# Load the models
text_encoder = ChatGLMModel.from_pretrained(
os.path.join(ckpt_dir, 'text_encoder'),
torch_dtype=torch.float16).half()
tokenizer = ChatGLMTokenizer.from_pretrained(os.path.join(ckpt_dir, 'text_encoder'))
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), revision=None).half()
scheduler = EulerDiscreteScheduler.from_pretrained(os.path.join(ckpt_dir, "scheduler"))
unet = UNet2DConditionModel.from_pretrained(os.path.join(ckpt_dir, "unet"), revision=None).half()
pipe = StableDiffusionXLPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
force_zeros_for_empty_prompt=False)
pipe = pipe.to("cuda")
@spaces.GPU(duration=200)
def generate_image(prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, num_images_per_prompt, use_random_seed, seed, progress=gr.Progress(track_tqdm=True)):
if use_random_seed:
seed = random.randint(0, 2**32 - 1)
else:
seed = int(seed) # Ensure seed is an integer
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images_per_prompt,
generator=torch.Generator(pipe.device).manual_seed(seed)
).images
return image, seed
description = """
<p align="center">Effective Training of Diffusion Model for Photorealistic Text-to-Image Synthesis</p>
<p><center>
<a href="https://kolors.kuaishou.com/" target="_blank">[Official Website]</a>
<a href="https://github.com/Kwai-Kolors/Kolors/blob/master/imgs/Kolors_paper.pdf" target="_blank">[Tech Report]</a>
<a href="https://huggingface.co./Kwai-Kolors/Kolors" target="_blank">[Model Page]</a>
<a href="https://github.com/Kwai-Kolors/Kolors" target="_blank">[Github]</a>
</center></p>
"""
# Gradio interface
iface = gr.Interface(
fn=generate_image,
inputs=[
gr.Textbox(label="Prompt"),
gr.Textbox(label="Negative Prompt")
],
additional_inputs=[
gr.Slider(512, 2048, 1024, step=64, label="Height"),
gr.Slider(512, 2048, 1024, step=64, label="Width"),
gr.Slider(20, 50, 20, step=1, label="Number of Inference Steps"),
gr.Slider(1, 20, 5, step=0.5, label="Guidance Scale"),
gr.Slider(1, 4, 1, step=1, label="Number of images per prompt"),
gr.Checkbox(label="Use Random Seed", value=True),
gr.Number(label="Seed", value=0, precision=0)
],
additional_inputs_accordion=gr.Accordion(label="Advanced settings", open=False),
outputs=[
gr.Gallery(label="Result", elem_id="gallery", show_label=False),
gr.Number(label="Seed Used")
],
title="Kolors",
description=description,
theme='bethecloud/storj_theme',
)
iface.launch(debug=True) |