from __future__ import annotations import numpy as np import torch import torch.nn.functional as F from ...utils.typing import * def dot(x, y): return torch.sum(x * y, -1, keepdim=True) class Mesh: def __init__( self, v_pos: Float[Tensor, "Nv 3"], t_pos_idx: Integer[Tensor, "Nf 3"], v_rgb: Integer[Tensor, "Nf 3"], **kwargs ) -> None: self.v_pos: Float[Tensor, "Nv 3"] = v_pos self.t_pos_idx: Integer[Tensor, "Nf 3"] = t_pos_idx self.v_rgb: Optional[Float[Tensor, "Nv 3"]] = v_rgb self._v_nrm: Optional[Float[Tensor, "Nv 3"]] = None self._v_tng: Optional[Float[Tensor, "Nv 3"]] = None self._v_tex: Optional[Float[Tensor, "Nt 3"]] = None self._t_tex_idx: Optional[Float[Tensor, "Nf 3"]] = None # self._v_rgb: Optional[Float[Tensor, "Nv 3"]] = None self._edges: Optional[Integer[Tensor, "Ne 2"]] = None self.extras: Dict[str, Any] = {} for k, v in kwargs.items(): self.add_extra(k, v) def add_extra(self, k, v) -> None: self.extras[k] = v def remove_outlier(self, outlier_n_faces_threshold: Union[int, float]) -> Mesh: if self.requires_grad: print("Mesh is differentiable, not removing outliers") return self # use trimesh to first split the mesh into connected components # then remove the components with less than n_face_threshold faces import trimesh # construct a trimesh object mesh = trimesh.Trimesh( vertices=self.v_pos.detach().cpu().numpy(), faces=self.t_pos_idx.detach().cpu().numpy(), ) # split the mesh into connected components components = mesh.split(only_watertight=False) # log the number of faces in each component print( "Mesh has {} components, with faces: {}".format( len(components), [c.faces.shape[0] for c in components] ) ) n_faces_threshold: int if isinstance(outlier_n_faces_threshold, float): # set the threshold to the number of faces in the largest component multiplied by outlier_n_faces_threshold n_faces_threshold = int( max([c.faces.shape[0] for c in components]) * outlier_n_faces_threshold ) else: # set the threshold directly to outlier_n_faces_threshold n_faces_threshold = outlier_n_faces_threshold # log the threshold print( "Removing components with less than {} faces".format(n_faces_threshold) ) # remove the components with less than n_face_threshold faces components = [c for c in components if c.faces.shape[0] >= n_faces_threshold] # log the number of faces in each component after removing outliers print( "Mesh has {} components after removing outliers, with faces: {}".format( len(components), [c.faces.shape[0] for c in components] ) ) # merge the components mesh = trimesh.util.concatenate(components) # convert back to our mesh format v_pos = torch.from_numpy(mesh.vertices).to(self.v_pos) t_pos_idx = torch.from_numpy(mesh.faces).to(self.t_pos_idx) clean_mesh = Mesh(v_pos, t_pos_idx) # keep the extras unchanged if len(self.extras) > 0: clean_mesh.extras = self.extras print( f"The following extra attributes are inherited from the original mesh unchanged: {list(self.extras.keys())}" ) return clean_mesh @property def requires_grad(self): return self.v_pos.requires_grad @property def v_nrm(self): if self._v_nrm is None: self._v_nrm = self._compute_vertex_normal() return self._v_nrm @property def v_tng(self): if self._v_tng is None: self._v_tng = self._compute_vertex_tangent() return self._v_tng @property def v_tex(self): if self._v_tex is None: self._v_tex, self._t_tex_idx = self._unwrap_uv() return self._v_tex @property def t_tex_idx(self): if self._t_tex_idx is None: self._v_tex, self._t_tex_idx = self._unwrap_uv() return self._t_tex_idx # @property # def v_rgb(self): # return self._v_rgb @property def edges(self): if self._edges is None: self._edges = self._compute_edges() return self._edges def _compute_vertex_normal(self): i0 = self.t_pos_idx[:, 0] i1 = self.t_pos_idx[:, 1] i2 = self.t_pos_idx[:, 2] v0 = self.v_pos[i0, :] v1 = self.v_pos[i1, :] v2 = self.v_pos[i2, :] face_normals = torch.cross(v1 - v0, v2 - v0) # Splat face normals to vertices v_nrm = torch.zeros_like(self.v_pos) v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals) v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals) v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals) # Normalize, replace zero (degenerated) normals with some default value v_nrm = torch.where( dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm) ) v_nrm = F.normalize(v_nrm, dim=1) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(v_nrm)) return v_nrm def _compute_vertex_tangent(self): vn_idx = [None] * 3 pos = [None] * 3 tex = [None] * 3 for i in range(0, 3): pos[i] = self.v_pos[self.t_pos_idx[:, i]] tex[i] = self.v_tex[self.t_tex_idx[:, i]] # t_nrm_idx is always the same as t_pos_idx vn_idx[i] = self.t_pos_idx[:, i] tangents = torch.zeros_like(self.v_nrm) tansum = torch.zeros_like(self.v_nrm) # Compute tangent space for each triangle uve1 = tex[1] - tex[0] uve2 = tex[2] - tex[0] pe1 = pos[1] - pos[0] pe2 = pos[2] - pos[0] nom = pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2] denom = uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1] # Avoid division by zero for degenerated texture coordinates tang = nom / torch.where( denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6) ) # Update all 3 vertices for i in range(0, 3): idx = vn_idx[i][:, None].repeat(1, 3) tangents.scatter_add_(0, idx, tang) # tangents[n_i] = tangents[n_i] + tang tansum.scatter_add_( 0, idx, torch.ones_like(tang) ) # tansum[n_i] = tansum[n_i] + 1 tangents = tangents / tansum # Normalize and make sure tangent is perpendicular to normal tangents = F.normalize(tangents, dim=1) tangents = F.normalize(tangents - dot(tangents, self.v_nrm) * self.v_nrm) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(tangents)) return tangents def _unwrap_uv( self, xatlas_chart_options: dict = {}, xatlas_pack_options: dict = {} ): print("Using xatlas to perform UV unwrapping, may take a while ...") import xatlas atlas = xatlas.Atlas() atlas.add_mesh( self.v_pos.detach().cpu().numpy(), self.t_pos_idx.cpu().numpy(), ) co = xatlas.ChartOptions() po = xatlas.PackOptions() for k, v in xatlas_chart_options.items(): setattr(co, k, v) for k, v in xatlas_pack_options.items(): setattr(po, k, v) atlas.generate(co, po) vmapping, indices, uvs = atlas.get_mesh(0) vmapping = ( torch.from_numpy( vmapping.astype(np.uint64, casting="same_kind").view(np.int64) ) .to(self.v_pos.device) .long() ) uvs = torch.from_numpy(uvs).to(self.v_pos.device).float() indices = ( torch.from_numpy( indices.astype(np.uint64, casting="same_kind").view(np.int64) ) .to(self.v_pos.device) .long() ) return uvs, indices def unwrap_uv( self, xatlas_chart_options: dict = {}, xatlas_pack_options: dict = {} ): self._v_tex, self._t_tex_idx = self._unwrap_uv( xatlas_chart_options, xatlas_pack_options ) def set_vertex_color(self, v_rgb): assert v_rgb.shape[0] == self.v_pos.shape[0] self._v_rgb = v_rgb def _compute_edges(self): # Compute edges edges = torch.cat( [ self.t_pos_idx[:, [0, 1]], self.t_pos_idx[:, [1, 2]], self.t_pos_idx[:, [2, 0]], ], dim=0, ) edges = edges.sort()[0] edges = torch.unique(edges, dim=0) return edges def normal_consistency(self) -> Float[Tensor, ""]: edge_nrm: Float[Tensor, "Ne 2 3"] = self.v_nrm[self.edges] nc = ( 1.0 - torch.cosine_similarity(edge_nrm[:, 0], edge_nrm[:, 1], dim=-1) ).mean() return nc def _laplacian_uniform(self): # from stable-dreamfusion # https://github.com/ashawkey/stable-dreamfusion/blob/8fb3613e9e4cd1ded1066b46e80ca801dfb9fd06/nerf/renderer.py#L224 verts, faces = self.v_pos, self.t_pos_idx V = verts.shape[0] F = faces.shape[0] # Neighbor indices ii = faces[:, [1, 2, 0]].flatten() jj = faces[:, [2, 0, 1]].flatten() adj = torch.stack([torch.cat([ii, jj]), torch.cat([jj, ii])], dim=0).unique( dim=1 ) adj_values = torch.ones(adj.shape[1]).to(verts) # Diagonal indices diag_idx = adj[0] # Build the sparse matrix idx = torch.cat((adj, torch.stack((diag_idx, diag_idx), dim=0)), dim=1) values = torch.cat((-adj_values, adj_values)) # The coalesce operation sums the duplicate indices, resulting in the # correct diagonal return torch.sparse_coo_tensor(idx, values, (V, V)).coalesce() def laplacian(self) -> Float[Tensor, ""]: with torch.no_grad(): L = self._laplacian_uniform() loss = L.mm(self.v_pos) loss = loss.norm(dim=1) loss = loss.mean() return loss