# Open Source Model Licensed under the Apache License Version 2.0 and Other Licenses of the Third-Party Components therein: # The below Model in this distribution may have been modified by THL A29 Limited ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. # The below software and/or models in this distribution may have been # modified by THL A29 Limited ("Tencent Modifications"). # All Tencent Modifications are Copyright (C) THL A29 Limited. # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import numpy as np from PIL import Image def to_rgb_image(maybe_rgba: Image.Image): ''' convert a PIL.Image to rgb mode with white background maybe_rgba: PIL.Image return: PIL.Image ''' if maybe_rgba.mode == 'RGB': return maybe_rgba elif maybe_rgba.mode == 'RGBA': rgba = maybe_rgba img = np.random.randint(255, 256, size=[rgba.size[1], rgba.size[0], 3], dtype=np.uint8) img = Image.fromarray(img, 'RGB') img.paste(rgba, mask=rgba.getchannel('A')) return img else: raise ValueError("Unsupported image type.", maybe_rgba.mode) def white_out_background(pil_img, is_gray_fg=True): data = pil_img.getdata() new_data = [] # convert fore-ground white to gray for r, g, b, a in data: if a < 16: new_data.append((255, 255, 255, 0)) # back-ground to be black else: is_white = is_gray_fg and (r>235) and (g>235) and (b>235) new_r = 235 if is_white else r new_g = 235 if is_white else g new_b = 235 if is_white else b new_data.append((new_r, new_g, new_b, a)) pil_img.putdata(new_data) return pil_img def recenter_img(img, size=512, color=(255,255,255)): img = white_out_background(img) mask = np.array(img)[..., 3] image = np.array(img)[..., :3] H, W, C = image.shape coords = np.nonzero(mask) x_min, x_max = coords[0].min(), coords[0].max() y_min, y_max = coords[1].min(), coords[1].max() h = x_max - x_min w = y_max - y_min if h == 0 or w == 0: raise ValueError roi = image[x_min:x_max, y_min:y_max] border_ratio = 0.15 # 0.2 pad_h = int(h * border_ratio) pad_w = int(w * border_ratio) result_tmp = np.full((h + pad_h, w + pad_w, C), color, dtype=np.uint8) result_tmp[pad_h // 2: pad_h // 2 + h, pad_w // 2: pad_w // 2 + w] = roi cur_h, cur_w = result_tmp.shape[:2] side = max(cur_h, cur_w) result = np.full((side, side, C), color, dtype=np.uint8) result[(side-cur_h)//2:(side-cur_h)//2+cur_h, (side-cur_w)//2:(side - cur_w)//2+cur_w,:] = result_tmp result = Image.fromarray(result) return result.resize((size, size), Image.LANCZOS) if size else result