from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL.Image from ...utils import BaseOutput @dataclass class IFPipelineOutput(BaseOutput): """ Args: Output class for Stable Diffusion pipelines. images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. nsfw_detected (`List[bool]`) List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content or a watermark. `None` if safety checking could not be performed. watermark_detected (`List[bool]`) List of flags denoting whether the corresponding generated image likely has a watermark. `None` if safety checking could not be performed. """ images: Union[List[PIL.Image.Image], np.ndarray] nsfw_detected: Optional[List[bool]] watermark_detected: Optional[List[bool]]