# Copyright 2024 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Tuple, Union import torch import torch.nn as nn import torch.utils.checkpoint from ...configuration_utils import ConfigMixin, register_to_config from ...loaders import UNet2DConditionLoadersMixin from ...utils import logging from ..activations import get_activation from ..attention import Attention, FeedForward from ..attention_processor import ( ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnAddedKVProcessor, AttnProcessor, ) from ..embeddings import TimestepEmbedding, Timesteps from ..modeling_utils import ModelMixin from ..transformers.transformer_temporal import TransformerTemporalModel from .unet_3d_blocks import ( CrossAttnDownBlock3D, CrossAttnUpBlock3D, DownBlock3D, UNetMidBlock3DCrossAttn, UpBlock3D, get_down_block, get_up_block, ) from .unet_3d_condition import UNet3DConditionOutput logger = logging.get_logger(__name__) # pylint: disable=invalid-name class I2VGenXLTransformerTemporalEncoder(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, activation_fn: str = "geglu", upcast_attention: bool = False, ff_inner_dim: Optional[int] = None, dropout: int = 0.0, ): super().__init__() self.norm1 = nn.LayerNorm(dim, elementwise_affine=True, eps=1e-5) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=False, upcast_attention=upcast_attention, out_bias=True, ) self.ff = FeedForward( dim, dropout=dropout, activation_fn=activation_fn, final_dropout=False, inner_dim=ff_inner_dim, bias=True, ) def forward( self, hidden_states: torch.FloatTensor, ) -> torch.FloatTensor: norm_hidden_states = self.norm1(hidden_states) attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None) hidden_states = attn_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) ff_output = self.ff(hidden_states) hidden_states = ff_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) return hidden_states class I2VGenXLUNet(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): r""" I2VGenXL UNet. It is a conditional 3D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample-shaped output. This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Parameters: sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): Height and width of input/output sample. in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): The tuple of downsample blocks to use. up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`): The tuple of upsample blocks to use. block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): The tuple of output channels for each block. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. If `None`, normalization and activation layers is skipped in post-processing. cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features. attention_head_dim (`int`, *optional*, defaults to 64): Attention head dim. num_attention_heads (`int`, *optional*): The number of attention heads. """ _supports_gradient_checkpointing = False @register_to_config def __init__( self, sample_size: Optional[int] = None, in_channels: int = 4, out_channels: int = 4, down_block_types: Tuple[str, ...] = ( "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D", ), up_block_types: Tuple[str, ...] = ( "UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", ), block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), layers_per_block: int = 2, norm_num_groups: Optional[int] = 32, cross_attention_dim: int = 1024, attention_head_dim: Union[int, Tuple[int]] = 64, num_attention_heads: Optional[Union[int, Tuple[int]]] = None, ): super().__init__() # When we first integrated the UNet into the library, we didn't have `attention_head_dim`. As a consequence # of that, we used `num_attention_heads` for arguments that actually denote attention head dimension. This # is why we ignore `num_attention_heads` and calculate it from `attention_head_dims` below. # This is still an incorrect way of calculating `num_attention_heads` but we need to stick to it # without running proper depcrecation cycles for the {down,mid,up} blocks which are a # part of the public API. num_attention_heads = attention_head_dim # Check inputs if len(down_block_types) != len(up_block_types): raise ValueError( f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." ) if len(block_out_channels) != len(down_block_types): raise ValueError( f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." ) if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): raise ValueError( f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." ) # input self.conv_in = nn.Conv2d(in_channels + in_channels, block_out_channels[0], kernel_size=3, padding=1) self.transformer_in = TransformerTemporalModel( num_attention_heads=8, attention_head_dim=num_attention_heads, in_channels=block_out_channels[0], num_layers=1, norm_num_groups=norm_num_groups, ) # image embedding self.image_latents_proj_in = nn.Sequential( nn.Conv2d(4, in_channels * 4, 3, padding=1), nn.SiLU(), nn.Conv2d(in_channels * 4, in_channels * 4, 3, stride=1, padding=1), nn.SiLU(), nn.Conv2d(in_channels * 4, in_channels, 3, stride=1, padding=1), ) self.image_latents_temporal_encoder = I2VGenXLTransformerTemporalEncoder( dim=in_channels, num_attention_heads=2, ff_inner_dim=in_channels * 4, attention_head_dim=in_channels, activation_fn="gelu", ) self.image_latents_context_embedding = nn.Sequential( nn.Conv2d(4, in_channels * 8, 3, padding=1), nn.SiLU(), nn.AdaptiveAvgPool2d((32, 32)), nn.Conv2d(in_channels * 8, in_channels * 16, 3, stride=2, padding=1), nn.SiLU(), nn.Conv2d(in_channels * 16, cross_attention_dim, 3, stride=2, padding=1), ) # other embeddings -- time, context, fps, etc. time_embed_dim = block_out_channels[0] * 4 self.time_proj = Timesteps(block_out_channels[0], True, 0) timestep_input_dim = block_out_channels[0] self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn="silu") self.context_embedding = nn.Sequential( nn.Linear(cross_attention_dim, time_embed_dim), nn.SiLU(), nn.Linear(time_embed_dim, cross_attention_dim * in_channels), ) self.fps_embedding = nn.Sequential( nn.Linear(timestep_input_dim, time_embed_dim), nn.SiLU(), nn.Linear(time_embed_dim, time_embed_dim) ) # blocks self.down_blocks = nn.ModuleList([]) self.up_blocks = nn.ModuleList([]) if isinstance(num_attention_heads, int): num_attention_heads = (num_attention_heads,) * len(down_block_types) # down output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 down_block = get_down_block( down_block_type, num_layers=layers_per_block, in_channels=input_channel, out_channels=output_channel, temb_channels=time_embed_dim, add_downsample=not is_final_block, resnet_eps=1e-05, resnet_act_fn="silu", resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads[i], downsample_padding=1, dual_cross_attention=False, ) self.down_blocks.append(down_block) # mid self.mid_block = UNetMidBlock3DCrossAttn( in_channels=block_out_channels[-1], temb_channels=time_embed_dim, resnet_eps=1e-05, resnet_act_fn="silu", output_scale_factor=1, cross_attention_dim=cross_attention_dim, num_attention_heads=num_attention_heads[-1], resnet_groups=norm_num_groups, dual_cross_attention=False, ) # count how many layers upsample the images self.num_upsamplers = 0 # up reversed_block_out_channels = list(reversed(block_out_channels)) reversed_num_attention_heads = list(reversed(num_attention_heads)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): is_final_block = i == len(block_out_channels) - 1 prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] # add upsample block for all BUT final layer if not is_final_block: add_upsample = True self.num_upsamplers += 1 else: add_upsample = False up_block = get_up_block( up_block_type, num_layers=layers_per_block + 1, in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=time_embed_dim, add_upsample=add_upsample, resnet_eps=1e-05, resnet_act_fn="silu", resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, num_attention_heads=reversed_num_attention_heads[i], dual_cross_attention=False, resolution_idx=i, ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-05) self.conv_act = get_activation("silu") self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1) @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: """ Sets the attention processor to use [feed forward chunking](https://huggingface.co./blog/reformer#2-chunked-feed-forward-layers). Parameters: chunk_size (`int`, *optional*): The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually over each tensor of dim=`dim`. dim (`int`, *optional*, defaults to `0`): The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) or dim=1 (sequence length). """ if dim not in [0, 1]: raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") # By default chunk size is 1 chunk_size = chunk_size or 1 def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, chunk_size, dim) # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking def disable_forward_chunking(self): def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, None, 0) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnAddedKVProcessor() elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor) # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel._set_gradient_checkpointing def _set_gradient_checkpointing(self, module, value: bool = False) -> None: if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)): module.gradient_checkpointing = value # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu def enable_freeu(self, s1, s2, b1, b2): r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497. The suffixes after the scaling factors represent the stage blocks where they are being applied. Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. Args: s1 (`float`): Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process. s2 (`float`): Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process. b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. """ for i, upsample_block in enumerate(self.up_blocks): setattr(upsample_block, "s1", s1) setattr(upsample_block, "s2", s2) setattr(upsample_block, "b1", b1) setattr(upsample_block, "b2", b2) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu def disable_freeu(self): """Disables the FreeU mechanism.""" freeu_keys = {"s1", "s2", "b1", "b2"} for i, upsample_block in enumerate(self.up_blocks): for k in freeu_keys: if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: setattr(upsample_block, k, None) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. This API is 🧪 experimental. """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. This API is 🧪 experimental. """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) def forward( self, sample: torch.FloatTensor, timestep: Union[torch.Tensor, float, int], fps: torch.Tensor, image_latents: torch.Tensor, image_embeddings: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, timestep_cond: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> Union[UNet3DConditionOutput, Tuple[torch.FloatTensor]]: r""" The [`I2VGenXLUNet`] forward method. Args: sample (`torch.FloatTensor`): The noisy input tensor with the following shape `(batch, num_frames, channel, height, width`. timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. fps (`torch.Tensor`): Frames per second for the video being generated. Used as a "micro-condition". image_latents (`torch.FloatTensor`): Image encodings from the VAE. image_embeddings (`torch.FloatTensor`): Projection embeddings of the conditioning image computed with a vision encoder. encoder_hidden_states (`torch.FloatTensor`): The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unet_3d_condition.UNet3DConditionOutput`] instead of a plain tuple. Returns: [`~models.unet_3d_condition.UNet3DConditionOutput`] or `tuple`: If `return_dict` is True, an [`~models.unet_3d_condition.UNet3DConditionOutput`] is returned, otherwise a `tuple` is returned where the first element is the sample tensor. """ batch_size, channels, num_frames, height, width = sample.shape # By default samples have to be AT least a multiple of the overall upsampling factor. # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). # However, the upsampling interpolation output size can be forced to fit any upsampling size # on the fly if necessary. default_overall_up_factor = 2**self.num_upsamplers # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` forward_upsample_size = False upsample_size = None if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): logger.info("Forward upsample size to force interpolation output size.") forward_upsample_size = True # 1. time timesteps = timestep if not torch.is_tensor(timesteps): # TODO: this requires sync between CPU and GPU. So try to pass `timesteps` as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = sample.device.type == "mps" if isinstance(timesteps, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(sample.shape[0]) t_emb = self.time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=self.dtype) t_emb = self.time_embedding(t_emb, timestep_cond) # 2. FPS # broadcast to batch dimension in a way that's compatible with ONNX/Core ML fps = fps.expand(fps.shape[0]) fps_emb = self.fps_embedding(self.time_proj(fps).to(dtype=self.dtype)) # 3. time + FPS embeddings. emb = t_emb + fps_emb emb = emb.repeat_interleave(repeats=num_frames, dim=0) # 4. context embeddings. # The context embeddings consist of both text embeddings from the input prompt # AND the image embeddings from the input image. For images, both VAE encodings # and the CLIP image embeddings are incorporated. # So the final `context_embeddings` becomes the query for cross-attention. context_emb = sample.new_zeros(batch_size, 0, self.config.cross_attention_dim) context_emb = torch.cat([context_emb, encoder_hidden_states], dim=1) image_latents_for_context_embds = image_latents[:, :, :1, :] image_latents_context_embs = image_latents_for_context_embds.permute(0, 2, 1, 3, 4).reshape( image_latents_for_context_embds.shape[0] * image_latents_for_context_embds.shape[2], image_latents_for_context_embds.shape[1], image_latents_for_context_embds.shape[3], image_latents_for_context_embds.shape[4], ) image_latents_context_embs = self.image_latents_context_embedding(image_latents_context_embs) _batch_size, _channels, _height, _width = image_latents_context_embs.shape image_latents_context_embs = image_latents_context_embs.permute(0, 2, 3, 1).reshape( _batch_size, _height * _width, _channels ) context_emb = torch.cat([context_emb, image_latents_context_embs], dim=1) image_emb = self.context_embedding(image_embeddings) image_emb = image_emb.view(-1, self.config.in_channels, self.config.cross_attention_dim) context_emb = torch.cat([context_emb, image_emb], dim=1) context_emb = context_emb.repeat_interleave(repeats=num_frames, dim=0) image_latents = image_latents.permute(0, 2, 1, 3, 4).reshape( image_latents.shape[0] * image_latents.shape[2], image_latents.shape[1], image_latents.shape[3], image_latents.shape[4], ) image_latents = self.image_latents_proj_in(image_latents) image_latents = ( image_latents[None, :] .reshape(batch_size, num_frames, channels, height, width) .permute(0, 3, 4, 1, 2) .reshape(batch_size * height * width, num_frames, channels) ) image_latents = self.image_latents_temporal_encoder(image_latents) image_latents = image_latents.reshape(batch_size, height, width, num_frames, channels).permute(0, 4, 3, 1, 2) # 5. pre-process sample = torch.cat([sample, image_latents], dim=1) sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:]) sample = self.conv_in(sample) sample = self.transformer_in( sample, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] # 6. down down_block_res_samples = (sample,) for downsample_block in self.down_blocks: if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: sample, res_samples = downsample_block( hidden_states=sample, temb=emb, encoder_hidden_states=context_emb, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, ) else: sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames) down_block_res_samples += res_samples # 7. mid if self.mid_block is not None: sample = self.mid_block( sample, emb, encoder_hidden_states=context_emb, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, ) # 8. up for i, upsample_block in enumerate(self.up_blocks): is_final_block = i == len(self.up_blocks) - 1 res_samples = down_block_res_samples[-len(upsample_block.resnets) :] down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] # if we have not reached the final block and need to forward the # upsample size, we do it here if not is_final_block and forward_upsample_size: upsample_size = down_block_res_samples[-1].shape[2:] if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=context_emb, upsample_size=upsample_size, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, ) else: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, num_frames=num_frames, ) # 9. post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) # reshape to (batch, channel, framerate, width, height) sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4) if not return_dict: return (sample,) return UNet3DConditionOutput(sample=sample)