# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Optional, Tuple, Union import torch import torch.nn.functional as F from torch import nn from ..activations import get_activation from ..resnet import Downsample1D, ResidualTemporalBlock1D, Upsample1D, rearrange_dims class DownResnetBlock1D(nn.Module): def __init__( self, in_channels: int, out_channels: Optional[int] = None, num_layers: int = 1, conv_shortcut: bool = False, temb_channels: int = 32, groups: int = 32, groups_out: Optional[int] = None, non_linearity: Optional[str] = None, time_embedding_norm: str = "default", output_scale_factor: float = 1.0, add_downsample: bool = True, ): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.time_embedding_norm = time_embedding_norm self.add_downsample = add_downsample self.output_scale_factor = output_scale_factor if groups_out is None: groups_out = groups # there will always be at least one resnet resnets = [ResidualTemporalBlock1D(in_channels, out_channels, embed_dim=temb_channels)] for _ in range(num_layers): resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=temb_channels)) self.resnets = nn.ModuleList(resnets) if non_linearity is None: self.nonlinearity = None else: self.nonlinearity = get_activation(non_linearity) self.downsample = None if add_downsample: self.downsample = Downsample1D(out_channels, use_conv=True, padding=1) def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: output_states = () hidden_states = self.resnets[0](hidden_states, temb) for resnet in self.resnets[1:]: hidden_states = resnet(hidden_states, temb) output_states += (hidden_states,) if self.nonlinearity is not None: hidden_states = self.nonlinearity(hidden_states) if self.downsample is not None: hidden_states = self.downsample(hidden_states) return hidden_states, output_states class UpResnetBlock1D(nn.Module): def __init__( self, in_channels: int, out_channels: Optional[int] = None, num_layers: int = 1, temb_channels: int = 32, groups: int = 32, groups_out: Optional[int] = None, non_linearity: Optional[str] = None, time_embedding_norm: str = "default", output_scale_factor: float = 1.0, add_upsample: bool = True, ): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.time_embedding_norm = time_embedding_norm self.add_upsample = add_upsample self.output_scale_factor = output_scale_factor if groups_out is None: groups_out = groups # there will always be at least one resnet resnets = [ResidualTemporalBlock1D(2 * in_channels, out_channels, embed_dim=temb_channels)] for _ in range(num_layers): resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=temb_channels)) self.resnets = nn.ModuleList(resnets) if non_linearity is None: self.nonlinearity = None else: self.nonlinearity = get_activation(non_linearity) self.upsample = None if add_upsample: self.upsample = Upsample1D(out_channels, use_conv_transpose=True) def forward( self, hidden_states: torch.FloatTensor, res_hidden_states_tuple: Optional[Tuple[torch.FloatTensor, ...]] = None, temb: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: if res_hidden_states_tuple is not None: res_hidden_states = res_hidden_states_tuple[-1] hidden_states = torch.cat((hidden_states, res_hidden_states), dim=1) hidden_states = self.resnets[0](hidden_states, temb) for resnet in self.resnets[1:]: hidden_states = resnet(hidden_states, temb) if self.nonlinearity is not None: hidden_states = self.nonlinearity(hidden_states) if self.upsample is not None: hidden_states = self.upsample(hidden_states) return hidden_states class ValueFunctionMidBlock1D(nn.Module): def __init__(self, in_channels: int, out_channels: int, embed_dim: int): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.embed_dim = embed_dim self.res1 = ResidualTemporalBlock1D(in_channels, in_channels // 2, embed_dim=embed_dim) self.down1 = Downsample1D(out_channels // 2, use_conv=True) self.res2 = ResidualTemporalBlock1D(in_channels // 2, in_channels // 4, embed_dim=embed_dim) self.down2 = Downsample1D(out_channels // 4, use_conv=True) def forward(self, x: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: x = self.res1(x, temb) x = self.down1(x) x = self.res2(x, temb) x = self.down2(x) return x class MidResTemporalBlock1D(nn.Module): def __init__( self, in_channels: int, out_channels: int, embed_dim: int, num_layers: int = 1, add_downsample: bool = False, add_upsample: bool = False, non_linearity: Optional[str] = None, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.add_downsample = add_downsample # there will always be at least one resnet resnets = [ResidualTemporalBlock1D(in_channels, out_channels, embed_dim=embed_dim)] for _ in range(num_layers): resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=embed_dim)) self.resnets = nn.ModuleList(resnets) if non_linearity is None: self.nonlinearity = None else: self.nonlinearity = get_activation(non_linearity) self.upsample = None if add_upsample: self.upsample = Downsample1D(out_channels, use_conv=True) self.downsample = None if add_downsample: self.downsample = Downsample1D(out_channels, use_conv=True) if self.upsample and self.downsample: raise ValueError("Block cannot downsample and upsample") def forward(self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor) -> torch.FloatTensor: hidden_states = self.resnets[0](hidden_states, temb) for resnet in self.resnets[1:]: hidden_states = resnet(hidden_states, temb) if self.upsample: hidden_states = self.upsample(hidden_states) if self.downsample: self.downsample = self.downsample(hidden_states) return hidden_states class OutConv1DBlock(nn.Module): def __init__(self, num_groups_out: int, out_channels: int, embed_dim: int, act_fn: str): super().__init__() self.final_conv1d_1 = nn.Conv1d(embed_dim, embed_dim, 5, padding=2) self.final_conv1d_gn = nn.GroupNorm(num_groups_out, embed_dim) self.final_conv1d_act = get_activation(act_fn) self.final_conv1d_2 = nn.Conv1d(embed_dim, out_channels, 1) def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: hidden_states = self.final_conv1d_1(hidden_states) hidden_states = rearrange_dims(hidden_states) hidden_states = self.final_conv1d_gn(hidden_states) hidden_states = rearrange_dims(hidden_states) hidden_states = self.final_conv1d_act(hidden_states) hidden_states = self.final_conv1d_2(hidden_states) return hidden_states class OutValueFunctionBlock(nn.Module): def __init__(self, fc_dim: int, embed_dim: int, act_fn: str = "mish"): super().__init__() self.final_block = nn.ModuleList( [ nn.Linear(fc_dim + embed_dim, fc_dim // 2), get_activation(act_fn), nn.Linear(fc_dim // 2, 1), ] ) def forward(self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor) -> torch.FloatTensor: hidden_states = hidden_states.view(hidden_states.shape[0], -1) hidden_states = torch.cat((hidden_states, temb), dim=-1) for layer in self.final_block: hidden_states = layer(hidden_states) return hidden_states _kernels = { "linear": [1 / 8, 3 / 8, 3 / 8, 1 / 8], "cubic": [-0.01171875, -0.03515625, 0.11328125, 0.43359375, 0.43359375, 0.11328125, -0.03515625, -0.01171875], "lanczos3": [ 0.003689131001010537, 0.015056144446134567, -0.03399861603975296, -0.066637322306633, 0.13550527393817902, 0.44638532400131226, 0.44638532400131226, 0.13550527393817902, -0.066637322306633, -0.03399861603975296, 0.015056144446134567, 0.003689131001010537, ], } class Downsample1d(nn.Module): def __init__(self, kernel: str = "linear", pad_mode: str = "reflect"): super().__init__() self.pad_mode = pad_mode kernel_1d = torch.tensor(_kernels[kernel]) self.pad = kernel_1d.shape[0] // 2 - 1 self.register_buffer("kernel", kernel_1d) def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: hidden_states = F.pad(hidden_states, (self.pad,) * 2, self.pad_mode) weight = hidden_states.new_zeros([hidden_states.shape[1], hidden_states.shape[1], self.kernel.shape[0]]) indices = torch.arange(hidden_states.shape[1], device=hidden_states.device) kernel = self.kernel.to(weight)[None, :].expand(hidden_states.shape[1], -1) weight[indices, indices] = kernel return F.conv1d(hidden_states, weight, stride=2) class Upsample1d(nn.Module): def __init__(self, kernel: str = "linear", pad_mode: str = "reflect"): super().__init__() self.pad_mode = pad_mode kernel_1d = torch.tensor(_kernels[kernel]) * 2 self.pad = kernel_1d.shape[0] // 2 - 1 self.register_buffer("kernel", kernel_1d) def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: hidden_states = F.pad(hidden_states, ((self.pad + 1) // 2,) * 2, self.pad_mode) weight = hidden_states.new_zeros([hidden_states.shape[1], hidden_states.shape[1], self.kernel.shape[0]]) indices = torch.arange(hidden_states.shape[1], device=hidden_states.device) kernel = self.kernel.to(weight)[None, :].expand(hidden_states.shape[1], -1) weight[indices, indices] = kernel return F.conv_transpose1d(hidden_states, weight, stride=2, padding=self.pad * 2 + 1) class SelfAttention1d(nn.Module): def __init__(self, in_channels: int, n_head: int = 1, dropout_rate: float = 0.0): super().__init__() self.channels = in_channels self.group_norm = nn.GroupNorm(1, num_channels=in_channels) self.num_heads = n_head self.query = nn.Linear(self.channels, self.channels) self.key = nn.Linear(self.channels, self.channels) self.value = nn.Linear(self.channels, self.channels) self.proj_attn = nn.Linear(self.channels, self.channels, bias=True) self.dropout = nn.Dropout(dropout_rate, inplace=True) def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor: new_projection_shape = projection.size()[:-1] + (self.num_heads, -1) # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D) new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3) return new_projection def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: residual = hidden_states batch, channel_dim, seq = hidden_states.shape hidden_states = self.group_norm(hidden_states) hidden_states = hidden_states.transpose(1, 2) query_proj = self.query(hidden_states) key_proj = self.key(hidden_states) value_proj = self.value(hidden_states) query_states = self.transpose_for_scores(query_proj) key_states = self.transpose_for_scores(key_proj) value_states = self.transpose_for_scores(value_proj) scale = 1 / math.sqrt(math.sqrt(key_states.shape[-1])) attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale) attention_probs = torch.softmax(attention_scores, dim=-1) # compute attention output hidden_states = torch.matmul(attention_probs, value_states) hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous() new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,) hidden_states = hidden_states.view(new_hidden_states_shape) # compute next hidden_states hidden_states = self.proj_attn(hidden_states) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.dropout(hidden_states) output = hidden_states + residual return output class ResConvBlock(nn.Module): def __init__(self, in_channels: int, mid_channels: int, out_channels: int, is_last: bool = False): super().__init__() self.is_last = is_last self.has_conv_skip = in_channels != out_channels if self.has_conv_skip: self.conv_skip = nn.Conv1d(in_channels, out_channels, 1, bias=False) self.conv_1 = nn.Conv1d(in_channels, mid_channels, 5, padding=2) self.group_norm_1 = nn.GroupNorm(1, mid_channels) self.gelu_1 = nn.GELU() self.conv_2 = nn.Conv1d(mid_channels, out_channels, 5, padding=2) if not self.is_last: self.group_norm_2 = nn.GroupNorm(1, out_channels) self.gelu_2 = nn.GELU() def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: residual = self.conv_skip(hidden_states) if self.has_conv_skip else hidden_states hidden_states = self.conv_1(hidden_states) hidden_states = self.group_norm_1(hidden_states) hidden_states = self.gelu_1(hidden_states) hidden_states = self.conv_2(hidden_states) if not self.is_last: hidden_states = self.group_norm_2(hidden_states) hidden_states = self.gelu_2(hidden_states) output = hidden_states + residual return output class UNetMidBlock1D(nn.Module): def __init__(self, mid_channels: int, in_channels: int, out_channels: Optional[int] = None): super().__init__() out_channels = in_channels if out_channels is None else out_channels # there is always at least one resnet self.down = Downsample1d("cubic") resnets = [ ResConvBlock(in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels), ] attentions = [ SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(out_channels, out_channels // 32), ] self.up = Upsample1d(kernel="cubic") self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: hidden_states = self.down(hidden_states) for attn, resnet in zip(self.attentions, self.resnets): hidden_states = resnet(hidden_states) hidden_states = attn(hidden_states) hidden_states = self.up(hidden_states) return hidden_states class AttnDownBlock1D(nn.Module): def __init__(self, out_channels: int, in_channels: int, mid_channels: Optional[int] = None): super().__init__() mid_channels = out_channels if mid_channels is None else mid_channels self.down = Downsample1d("cubic") resnets = [ ResConvBlock(in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels), ] attentions = [ SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(out_channels, out_channels // 32), ] self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: hidden_states = self.down(hidden_states) for resnet, attn in zip(self.resnets, self.attentions): hidden_states = resnet(hidden_states) hidden_states = attn(hidden_states) return hidden_states, (hidden_states,) class DownBlock1D(nn.Module): def __init__(self, out_channels: int, in_channels: int, mid_channels: Optional[int] = None): super().__init__() mid_channels = out_channels if mid_channels is None else mid_channels self.down = Downsample1d("cubic") resnets = [ ResConvBlock(in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels), ] self.resnets = nn.ModuleList(resnets) def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: hidden_states = self.down(hidden_states) for resnet in self.resnets: hidden_states = resnet(hidden_states) return hidden_states, (hidden_states,) class DownBlock1DNoSkip(nn.Module): def __init__(self, out_channels: int, in_channels: int, mid_channels: Optional[int] = None): super().__init__() mid_channels = out_channels if mid_channels is None else mid_channels resnets = [ ResConvBlock(in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels), ] self.resnets = nn.ModuleList(resnets) def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: hidden_states = torch.cat([hidden_states, temb], dim=1) for resnet in self.resnets: hidden_states = resnet(hidden_states) return hidden_states, (hidden_states,) class AttnUpBlock1D(nn.Module): def __init__(self, in_channels: int, out_channels: int, mid_channels: Optional[int] = None): super().__init__() mid_channels = out_channels if mid_channels is None else mid_channels resnets = [ ResConvBlock(2 * in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels), ] attentions = [ SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(out_channels, out_channels // 32), ] self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.up = Upsample1d(kernel="cubic") def forward( self, hidden_states: torch.FloatTensor, res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], temb: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: res_hidden_states = res_hidden_states_tuple[-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) for resnet, attn in zip(self.resnets, self.attentions): hidden_states = resnet(hidden_states) hidden_states = attn(hidden_states) hidden_states = self.up(hidden_states) return hidden_states class UpBlock1D(nn.Module): def __init__(self, in_channels: int, out_channels: int, mid_channels: Optional[int] = None): super().__init__() mid_channels = in_channels if mid_channels is None else mid_channels resnets = [ ResConvBlock(2 * in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels), ] self.resnets = nn.ModuleList(resnets) self.up = Upsample1d(kernel="cubic") def forward( self, hidden_states: torch.FloatTensor, res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], temb: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: res_hidden_states = res_hidden_states_tuple[-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) for resnet in self.resnets: hidden_states = resnet(hidden_states) hidden_states = self.up(hidden_states) return hidden_states class UpBlock1DNoSkip(nn.Module): def __init__(self, in_channels: int, out_channels: int, mid_channels: Optional[int] = None): super().__init__() mid_channels = in_channels if mid_channels is None else mid_channels resnets = [ ResConvBlock(2 * in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels, is_last=True), ] self.resnets = nn.ModuleList(resnets) def forward( self, hidden_states: torch.FloatTensor, res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], temb: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: res_hidden_states = res_hidden_states_tuple[-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) for resnet in self.resnets: hidden_states = resnet(hidden_states) return hidden_states DownBlockType = Union[DownResnetBlock1D, DownBlock1D, AttnDownBlock1D, DownBlock1DNoSkip] MidBlockType = Union[MidResTemporalBlock1D, ValueFunctionMidBlock1D, UNetMidBlock1D] OutBlockType = Union[OutConv1DBlock, OutValueFunctionBlock] UpBlockType = Union[UpResnetBlock1D, UpBlock1D, AttnUpBlock1D, UpBlock1DNoSkip] def get_down_block( down_block_type: str, num_layers: int, in_channels: int, out_channels: int, temb_channels: int, add_downsample: bool, ) -> DownBlockType: if down_block_type == "DownResnetBlock1D": return DownResnetBlock1D( in_channels=in_channels, num_layers=num_layers, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, ) elif down_block_type == "DownBlock1D": return DownBlock1D(out_channels=out_channels, in_channels=in_channels) elif down_block_type == "AttnDownBlock1D": return AttnDownBlock1D(out_channels=out_channels, in_channels=in_channels) elif down_block_type == "DownBlock1DNoSkip": return DownBlock1DNoSkip(out_channels=out_channels, in_channels=in_channels) raise ValueError(f"{down_block_type} does not exist.") def get_up_block( up_block_type: str, num_layers: int, in_channels: int, out_channels: int, temb_channels: int, add_upsample: bool ) -> UpBlockType: if up_block_type == "UpResnetBlock1D": return UpResnetBlock1D( in_channels=in_channels, num_layers=num_layers, out_channels=out_channels, temb_channels=temb_channels, add_upsample=add_upsample, ) elif up_block_type == "UpBlock1D": return UpBlock1D(in_channels=in_channels, out_channels=out_channels) elif up_block_type == "AttnUpBlock1D": return AttnUpBlock1D(in_channels=in_channels, out_channels=out_channels) elif up_block_type == "UpBlock1DNoSkip": return UpBlock1DNoSkip(in_channels=in_channels, out_channels=out_channels) raise ValueError(f"{up_block_type} does not exist.") def get_mid_block( mid_block_type: str, num_layers: int, in_channels: int, mid_channels: int, out_channels: int, embed_dim: int, add_downsample: bool, ) -> MidBlockType: if mid_block_type == "MidResTemporalBlock1D": return MidResTemporalBlock1D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, embed_dim=embed_dim, add_downsample=add_downsample, ) elif mid_block_type == "ValueFunctionMidBlock1D": return ValueFunctionMidBlock1D(in_channels=in_channels, out_channels=out_channels, embed_dim=embed_dim) elif mid_block_type == "UNetMidBlock1D": return UNetMidBlock1D(in_channels=in_channels, mid_channels=mid_channels, out_channels=out_channels) raise ValueError(f"{mid_block_type} does not exist.") def get_out_block( *, out_block_type: str, num_groups_out: int, embed_dim: int, out_channels: int, act_fn: str, fc_dim: int ) -> Optional[OutBlockType]: if out_block_type == "OutConv1DBlock": return OutConv1DBlock(num_groups_out, out_channels, embed_dim, act_fn) elif out_block_type == "ValueFunction": return OutValueFunctionBlock(fc_dim, embed_dim, act_fn) return None