# Open Source Model Licensed under the Apache License Version 2.0 and Other Licenses of the Third-Party Components therein: # The below Model in this distribution may have been modified by THL A29 Limited ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. # The below software and/or models in this distribution may have been # modified by THL A29 Limited ("Tencent Modifications"). # All Tencent Modifications are Copyright (C) THL A29 Limited. # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import math import numpy import torch import inspect import warnings from PIL import Image from einops import rearrange import torch.nn.functional as F from diffusers.utils.torch_utils import randn_tensor from diffusers.configuration_utils import FrozenDict from diffusers.image_processor import VaeImageProcessor from typing import Any, Callable, Dict, List, Optional, Union from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers import DDPMScheduler, EulerAncestralDiscreteScheduler, ImagePipelineOutput from diffusers.loaders import ( FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin ) from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection ) from diffusers.models.attention_processor import ( Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0 ) from .utils import to_rgb_image, white_out_background, recenter_img EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from here import Hunyuan3d_MVD_Qing_Pipeline >>> pipe = Hunyuan3d_MVD_Qing_Pipeline.from_pretrained( ... "Tencent-Hunyuan-3D/MVD-Qing", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> img = Image.open("demo.png") >>> res_img = pipe(img).images[0] """ def unscale_latents(latents): return latents / 0.75 + 0.22 def unscale_image (image ): return image / 0.50 * 0.80 def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) noise_pred_rescaled = noise_cfg * (std_text / std_cfg) noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg return noise_cfg class ReferenceOnlyAttnProc(torch.nn.Module): # reference attention def __init__(self, chained_proc, enabled=False, name=None): super().__init__() self.enabled = enabled self.chained_proc = chained_proc self.name = name def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, mode="w", ref_dict=None): if encoder_hidden_states is None: encoder_hidden_states = hidden_states if self.enabled: if mode == 'w': ref_dict[self.name] = encoder_hidden_states elif mode == 'r': encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1) res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask) return res # class RowWiseAttnProcessor2_0: # def __call__(self, attn, # hidden_states, # encoder_hidden_states=None, # attention_mask=None, # temb=None, # num_views=6, # *args, # **kwargs): # residual = hidden_states # if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) # input_ndim = hidden_states.ndim # if input_ndim == 4: # batch_size, channel, height, width = hidden_states.shape # hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) # if encoder_hidden_states is None: # batch_size, sequence_length, _ = hidden_states.shape # else: # batch_size, sequence_length, _ = encoder_hidden_states.shape # if attention_mask is not None: # attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) # if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) # query = attn.to_q(hidden_states) # if encoder_hidden_states is None: encoder_hidden_states = hidden_states # elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) # # encoder_hidden_states [B, 6hw+hw, C] if ref att # key = attn.to_k(encoder_hidden_states) # [B, Vhw+hw, C] # value = attn.to_v(encoder_hidden_states) # [B, Vhw+hw, C] # mv_flag = hidden_states.shape[1] < encoder_hidden_states.shape[1] and encoder_hidden_states.shape[1] != 77 # if mv_flag: # target_size = int(math.sqrt(hidden_states.shape[1] // num_views)) # assert target_size ** 2 * num_views == hidden_states.shape[1] # gen_key = key[:, :num_views*target_size*target_size, :] # ref_key = key[:, num_views*target_size*target_size:, :] # gen_value = value[:, :num_views*target_size*target_size, :] # ref_value = value[:, num_views*target_size*target_size:, :] # # rowwise attention # query, gen_key, gen_value = \ # rearrange( query, "b (v1 h v2 w) c -> (b h) (v1 v2 w) c", # v1=num_views//2, v2=2, h=target_size, w=target_size), \ # rearrange( gen_key, "b (v1 h v2 w) c -> (b h) (v1 v2 w) c", # v1=num_views//2, v2=2, h=target_size, w=target_size), \ # rearrange(gen_value, "b (v1 h v2 w) c -> (b h) (v1 v2 w) c", # v1=num_views//2, v2=2, h=target_size, w=target_size) # inner_dim = key.shape[-1] # ref_size = int(math.sqrt(ref_key.shape[1])) # ref_key_expanded = ref_key.view(batch_size, 1, ref_size * ref_size, inner_dim) # ref_key_expanded = ref_key_expanded.expand(-1, target_size, -1, -1).contiguous() # ref_key_expanded = ref_key_expanded.view(batch_size * target_size, ref_size * ref_size, inner_dim) # key = torch.cat([ gen_key, ref_key_expanded], dim=1) # ref_value_expanded = ref_value.view(batch_size, 1, ref_size * ref_size, inner_dim) # ref_value_expanded = ref_value_expanded.expand(-1, target_size, -1, -1).contiguous() # ref_value_expanded = ref_value_expanded.view(batch_size * target_size, ref_size * ref_size, inner_dim) # value = torch.cat([gen_value, ref_value_expanded], dim=1) # h = target_size # else: # target_size = int(math.sqrt(hidden_states.shape[1])) # h = 1 # num_views = 1 # inner_dim = key.shape[-1] # head_dim = inner_dim // attn.heads # query = query.view(batch_size * h, -1, attn.heads, head_dim).transpose(1, 2) # key = key.view(batch_size * h, -1, attn.heads, head_dim).transpose(1, 2) # value = value.view(batch_size * h, -1, attn.heads, head_dim).transpose(1, 2) # hidden_states = F.scaled_dot_product_attention(query, key, value, # attn_mask=attention_mask, # dropout_p=0.0, # is_causal=False) # hidden_states = hidden_states.transpose(1, 2).reshape(batch_size * h, # -1, # attn.heads * head_dim).to(query.dtype) # hidden_states = attn.to_out[1](attn.to_out[0](hidden_states)) # if mv_flag: hidden_states = rearrange(hidden_states, "(b h) (v1 v2 w) c -> b (v1 h v2 w) c", # b=batch_size, v1=num_views//2, # v2=2, h=target_size, w=target_size) # if input_ndim == 4: # hidden_states = hidden_states.transpose(-1, -2) # hidden_states = hidden_states.reshape(batch_size, # channel, # target_size, # target_size) # if attn.residual_connection: hidden_states = hidden_states + residual # hidden_states = hidden_states / attn.rescale_output_factor # return hidden_states class RefOnlyNoisedUNet(torch.nn.Module): def __init__(self, unet, train_sched, val_sched): super().__init__() self.unet = unet self.train_sched = train_sched self.val_sched = val_sched unet_lora_attn_procs = dict() for name, _ in unet.attn_processors.items(): unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(AttnProcessor2_0(), enabled=name.endswith("attn1.processor"), name=name) unet.set_attn_processor(unet_lora_attn_procs) def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: return getattr(self.unet, name) def forward(self, sample, timestep, encoder_hidden_states, *args, cross_attention_kwargs, **kwargs): cond_lat = cross_attention_kwargs['cond_lat'] noise = torch.randn_like(cond_lat) if self.training: noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep) noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep) else: noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1)) noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1)) ref_dict = {} self.unet(noisy_cond_lat, timestep, encoder_hidden_states, *args, cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict), **kwargs) return self.unet(sample, timestep, encoder_hidden_states, *args, cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict), **kwargs) class Hunyuan3d_MVD_Lite_Pipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin): def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, vision_encoder: CLIPVisionModelWithProjection, feature_extractor_clip: CLIPImageProcessor, feature_extractor_vae: CLIPImageProcessor, ramping_coefficients: Optional[list] = None, safety_checker=None, ): DiffusionPipeline.__init__(self) self.register_modules( vae=vae, unet=unet, tokenizer=tokenizer, scheduler=scheduler, text_encoder=text_encoder, vision_encoder=vision_encoder, feature_extractor_vae=feature_extractor_vae, feature_extractor_clip=feature_extractor_clip) ''' rewrite the stable diffusion pipeline vae: vae unet: unet tokenizer: tokenizer scheduler: scheduler text_encoder: text_encoder vision_encoder: vision_encoder feature_extractor_vae: feature_extractor_vae feature_extractor_clip: feature_extractor_clip ''' self.register_to_config(ramping_coefficients=ramping_coefficients) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) def prepare_extra_step_kwargs(self, generator, eta): extra_step_kwargs = {} accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_eta: extra_step_kwargs["eta"] = eta accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) latents = latents * self.scheduler.init_noise_sigma return latents @torch.no_grad() def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, ): if lora_scale is not None and isinstance(self, LoraLoaderMixin): self._lora_scale = lora_scale if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)[0] if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError() elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError() else: uncond_tokens = negative_prompt if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer(uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt") if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds @torch.no_grad() def encode_condition_image(self, image: torch.Tensor): return self.vae.encode(image).latent_dist.sample() @torch.no_grad() def __call__(self, image=None, width=640, height=960, num_inference_steps=75, return_dict=True, generator=None, **kwargs): batch_size = 1 num_images_per_prompt = 1 output_type = 'pil' do_classifier_free_guidance = True guidance_rescale = 0. if isinstance(self.unet, UNet2DConditionModel): self.unet = RefOnlyNoisedUNet(self.unet, None, self.scheduler).eval() cond_image = recenter_img(image) cond_image = to_rgb_image(image) image = cond_image image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values image_1 = image_1.to(device=self.vae.device, dtype=self.vae.dtype) image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype) cond_lat = self.encode_condition_image(image_1) negative_lat = self.encode_condition_image(torch.zeros_like(image_1)) cond_lat = torch.cat([negative_lat, cond_lat]) cross_attention_kwargs = dict(cond_lat=cond_lat) global_embeds = self.vision_encoder(image_2, output_hidden_states=False).image_embeds.unsqueeze(-2) encoder_hidden_states = self._encode_prompt('', self.device, num_images_per_prompt, False) ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1) prompt_embeds = torch.cat([encoder_hidden_states, encoder_hidden_states + global_embeds * ramp]) device = self._execution_device self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, None) extra_step_kwargs = self.prepare_extra_step_kwargs(generator, 0.0) num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order # set adaptive cfg # the image order is: # [0, 60, # 120, 180, # 240, 300] # the cfg is set as 3, 2.5, 2, 1.5 tmp_guidance_scale = torch.ones_like(latents) tmp_guidance_scale[:, :, :40, :40] = 3 tmp_guidance_scale[:, :, :40, 40:] = 2.5 tmp_guidance_scale[:, :, 40:80, :40] = 2 tmp_guidance_scale[:, :, 40:80, 40:] = 1.5 tmp_guidance_scale[:, :, 80:120, :40] = 2 tmp_guidance_scale[:, :, 80:120, 40:] = 2.5 with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False)[0] adaptive_guidance_scale = (2 + 16 * (t / 1000) ** 5) / 3 if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + \ tmp_guidance_scale * adaptive_guidance_scale * \ (noise_pred_text - noise_pred_uncond) if do_classifier_free_guidance and guidance_rescale > 0.0: noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if i==len(timesteps)-1 or ((i+1)>num_warmup_steps and (i+1)%self.scheduler.order==0): progress_bar.update() latents = unscale_latents(latents) image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]) image = self.image_processor.postprocess(image, output_type='pil')[0] image = [image, cond_image] return ImagePipelineOutput(images=image) if return_dict else (image,)