# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from copy import deepcopy from typing import Callable, Dict, List, Optional, Union import numpy as np import PIL.Image import torch import torch.nn.functional as F from packaging import version from PIL import Image from ... import __version__ from ...models import UNet2DConditionModel, VQModel from ...schedulers import DDPMScheduler from ...utils import deprecate, logging from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> from diffusers import KandinskyV22InpaintPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> import numpy as np >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "a hat" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22InpaintPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ) >>> mask = np.zeros((768, 768), dtype=np.float32) >>> mask[:250, 250:-250] = 1 >>> out = pipe( ... image=init_image, ... mask_image=mask, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ) >>> image = out.images[0] >>> image.save("cat_with_hat.png") ``` """ # Copied from diffusers.pipelines.kandinsky2_2.pipeline_kandinsky2_2.downscale_height_and_width def downscale_height_and_width(height, width, scale_factor=8): new_height = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 new_width = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor # Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_inpaint.prepare_mask def prepare_mask(masks): prepared_masks = [] for mask in masks: old_mask = deepcopy(mask) for i in range(mask.shape[1]): for j in range(mask.shape[2]): if old_mask[0][i][j] == 1: continue if i != 0: mask[:, i - 1, j] = 0 if j != 0: mask[:, i, j - 1] = 0 if i != 0 and j != 0: mask[:, i - 1, j - 1] = 0 if i != mask.shape[1] - 1: mask[:, i + 1, j] = 0 if j != mask.shape[2] - 1: mask[:, i, j + 1] = 0 if i != mask.shape[1] - 1 and j != mask.shape[2] - 1: mask[:, i + 1, j + 1] = 0 prepared_masks.append(mask) return torch.stack(prepared_masks, dim=0) # Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_inpaint.prepare_mask_and_masked_image def prepare_mask_and_masked_image(image, mask, height, width): r""" Prepares a pair (mask, image) to be consumed by the Kandinsky inpaint pipeline. This means that those inputs will be converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the ``image`` and ``1`` for the ``mask``. The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be binarized (``mask > 0.5``) and cast to ``torch.float32`` too. Args: image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint. It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width`` ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``. mask (_type_): The mask to apply to the image, i.e. regions to inpaint. It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width`` ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. Raises: ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions. TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not (ot the other way around). Returns: tuple[torch.Tensor]: The pair (mask, image) as ``torch.Tensor`` with 4 dimensions: ``batch x channels x height x width``. """ if image is None: raise ValueError("`image` input cannot be undefined.") if mask is None: raise ValueError("`mask_image` input cannot be undefined.") if isinstance(image, torch.Tensor): if not isinstance(mask, torch.Tensor): raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not") # Batch single image if image.ndim == 3: assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" image = image.unsqueeze(0) # Batch and add channel dim for single mask if mask.ndim == 2: mask = mask.unsqueeze(0).unsqueeze(0) # Batch single mask or add channel dim if mask.ndim == 3: # Single batched mask, no channel dim or single mask not batched but channel dim if mask.shape[0] == 1: mask = mask.unsqueeze(0) # Batched masks no channel dim else: mask = mask.unsqueeze(1) assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions" assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions" assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size" # Check image is in [-1, 1] if image.min() < -1 or image.max() > 1: raise ValueError("Image should be in [-1, 1] range") # Check mask is in [0, 1] if mask.min() < 0 or mask.max() > 1: raise ValueError("Mask should be in [0, 1] range") # Binarize mask mask[mask < 0.5] = 0 mask[mask >= 0.5] = 1 # Image as float32 image = image.to(dtype=torch.float32) elif isinstance(mask, torch.Tensor): raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not") else: # preprocess image if isinstance(image, (PIL.Image.Image, np.ndarray)): image = [image] if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): # resize all images w.r.t passed height an width image = [i.resize((width, height), resample=Image.BICUBIC, reducing_gap=1) for i in image] image = [np.array(i.convert("RGB"))[None, :] for i in image] image = np.concatenate(image, axis=0) elif isinstance(image, list) and isinstance(image[0], np.ndarray): image = np.concatenate([i[None, :] for i in image], axis=0) image = image.transpose(0, 3, 1, 2) image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 # preprocess mask if isinstance(mask, (PIL.Image.Image, np.ndarray)): mask = [mask] if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image): mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask] mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0) mask = mask.astype(np.float32) / 255.0 elif isinstance(mask, list) and isinstance(mask[0], np.ndarray): mask = np.concatenate([m[None, None, :] for m in mask], axis=0) mask[mask < 0.5] = 0 mask[mask >= 0.5] = 1 mask = torch.from_numpy(mask) mask = 1 - mask return mask, image class KandinskyV22InpaintPipeline(DiffusionPipeline): """ Pipeline for text-guided image inpainting using Kandinsky2.1 This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: scheduler ([`DDIMScheduler`]): A scheduler to be used in combination with `unet` to generate image latents. unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the image embedding. movq ([`VQModel`]): MoVQ Decoder to generate the image from the latents. """ model_cpu_offload_seq = "unet->movq" _callback_tensor_inputs = ["latents", "image_embeds", "negative_image_embeds", "masked_image", "mask_image"] def __init__( self, unet: UNet2DConditionModel, scheduler: DDPMScheduler, movq: VQModel, ): super().__init__() self.register_modules( unet=unet, scheduler=scheduler, movq=movq, ) self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) self._warn_has_been_called = False # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps @torch.no_grad() def __call__( self, image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], image: Union[torch.FloatTensor, PIL.Image.Image], mask_image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray], negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], height: int = 512, width: int = 512, num_inference_steps: int = 100, guidance_scale: float = 4.0, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): """ Function invoked when calling the pipeline for generation. Args: image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): The clip image embeddings for text prompt, that will be used to condition the image generation. image (`PIL.Image.Image`): `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will be masked out with `mask_image` and repainted according to `prompt`. mask_image (`np.array`): Tensor representing an image batch, to mask `image`. White pixels in the mask will be repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): The clip image embeddings for negative text prompt, will be used to condition the image generation. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` """ if not self._warn_has_been_called and version.parse(version.parse(__version__).base_version) < version.parse( "0.23.0.dev0" ): logger.warning( "Please note that the expected format of `mask_image` has recently been changed. " "Before diffusers == 0.19.0, Kandinsky Inpainting pipelines repainted black pixels and preserved black pixels. " "As of diffusers==0.19.0 this behavior has been inverted. Now white pixels are repainted and black pixels are preserved. " "This way, Kandinsky's masking behavior is aligned with Stable Diffusion. " "THIS means that you HAVE to invert the input mask to have the same behavior as before as explained in https://github.com/huggingface/diffusers/pull/4207. " "This warning will be surpressed after the first inference call and will be removed in diffusers>0.23.0" ) self._warn_has_been_called = True callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) self._guidance_scale = guidance_scale device = self._execution_device if isinstance(image_embeds, list): image_embeds = torch.cat(image_embeds, dim=0) batch_size = image_embeds.shape[0] * num_images_per_prompt if isinstance(negative_image_embeds, list): negative_image_embeds = torch.cat(negative_image_embeds, dim=0) if self.do_classifier_free_guidance: image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to( dtype=self.unet.dtype, device=device ) self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # preprocess image and mask mask_image, image = prepare_mask_and_masked_image(image, mask_image, height, width) image = image.to(dtype=image_embeds.dtype, device=device) image = self.movq.encode(image)["latents"] mask_image = mask_image.to(dtype=image_embeds.dtype, device=device) image_shape = tuple(image.shape[-2:]) mask_image = F.interpolate( mask_image, image_shape, mode="nearest", ) mask_image = prepare_mask(mask_image) masked_image = image * mask_image mask_image = mask_image.repeat_interleave(num_images_per_prompt, dim=0) masked_image = masked_image.repeat_interleave(num_images_per_prompt, dim=0) if self.do_classifier_free_guidance: mask_image = mask_image.repeat(2, 1, 1, 1) masked_image = masked_image.repeat(2, 1, 1, 1) num_channels_latents = self.movq.config.latent_channels height, width = downscale_height_and_width(height, width, self.movq_scale_factor) # create initial latent latents = self.prepare_latents( (batch_size, num_channels_latents, height, width), image_embeds.dtype, device, generator, latents, self.scheduler, ) noise = torch.clone(latents) self._num_timesteps = len(timesteps) for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = torch.cat([latent_model_input, masked_image, mask_image], dim=1) added_cond_kwargs = {"image_embeds": image_embeds} noise_pred = self.unet( sample=latent_model_input, timestep=t, encoder_hidden_states=None, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] if self.do_classifier_free_guidance: noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1) noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) _, variance_pred_text = variance_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) if not ( hasattr(self.scheduler.config, "variance_type") and self.scheduler.config.variance_type in ["learned", "learned_range"] ): noise_pred, _ = noise_pred.split(latents.shape[1], dim=1) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, generator=generator, )[0] init_latents_proper = image[:1] init_mask = mask_image[:1] if i < len(timesteps) - 1: noise_timestep = timesteps[i + 1] init_latents_proper = self.scheduler.add_noise( init_latents_proper, noise, torch.tensor([noise_timestep]) ) latents = init_mask * init_latents_proper + (1 - init_mask) * latents if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) image_embeds = callback_outputs.pop("image_embeds", image_embeds) negative_image_embeds = callback_outputs.pop("negative_image_embeds", negative_image_embeds) masked_image = callback_outputs.pop("masked_image", masked_image) mask_image = callback_outputs.pop("mask_image", mask_image) if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) # post-processing latents = mask_image[:1] * image[:1] + (1 - mask_image[:1]) * latents if output_type not in ["pt", "np", "pil", "latent"]: raise ValueError( f"Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}" ) if not output_type == "latent": image = self.movq.decode(latents, force_not_quantize=True)["sample"] if output_type in ["np", "pil"]: image = image * 0.5 + 0.5 image = image.clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": image = self.numpy_to_pil(image) else: image = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)