import argparse import contextlib import time import gc import logging import math import os import random import jsonlines import functools import shutil import pyrallis import itertools from pathlib import Path from collections import namedtuple, OrderedDict import accelerate import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed from datasets import load_dataset from packaging import version from PIL import Image from losses.losses import * from torchvision import transforms from torchvision.transforms.functional import crop from tqdm.auto import tqdm def import_model_class_from_model_name_or_path( pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" ): from transformers import PretrainedConfig text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder=subfolder, revision=revision ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "CLIPTextModelWithProjection": from transformers import CLIPTextModelWithProjection return CLIPTextModelWithProjection else: raise ValueError(f"{model_class} is not supported.") def get_train_dataset(dataset_name, dataset_dir, args, accelerator): # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. dataset = load_dataset( dataset_name, data_dir=dataset_dir, cache_dir=os.path.join(dataset_dir, ".cache"), num_proc=4, split="train", ) # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset.column_names # 6. Get the column names for input/target. if args.image_column is None: args.image_column = column_names[0] logger.info(f"image column defaulting to {column_names[0]}") else: image_column = args.image_column if image_column not in column_names: logger.warning(f"dataset {dataset_name} has no column {image_column}") if args.caption_column is None: args.caption_column = column_names[1] logger.info(f"caption column defaulting to {column_names[1]}") else: caption_column = args.caption_column if caption_column not in column_names: logger.warning(f"dataset {dataset_name} has no column {caption_column}") if args.conditioning_image_column is None: args.conditioning_image_column = column_names[2] logger.info(f"conditioning image column defaulting to {column_names[2]}") else: conditioning_image_column = args.conditioning_image_column if conditioning_image_column not in column_names: logger.warning(f"dataset {dataset_name} has no column {conditioning_image_column}") with accelerator.main_process_first(): train_dataset = dataset.shuffle(seed=args.seed) if args.max_train_samples is not None: train_dataset = train_dataset.select(range(args.max_train_samples)) return train_dataset def prepare_train_dataset(dataset, accelerator, deg_pipeline, centralize=False): # Data augmentations. hflip = deg_pipeline.augment_opt['use_hflip'] and random.random() < 0.5 vflip = deg_pipeline.augment_opt['use_rot'] and random.random() < 0.5 rot90 = deg_pipeline.augment_opt['use_rot'] and random.random() < 0.5 augment_transforms = [] if hflip: augment_transforms.append(transforms.RandomHorizontalFlip(p=1.0)) if vflip: augment_transforms.append(transforms.RandomVerticalFlip(p=1.0)) if rot90: # FIXME augment_transforms.append(transforms.RandomRotation(degrees=(90,90))) torch_transforms=[transforms.ToTensor()] if centralize: # to [-1, 1] torch_transforms.append(transforms.Normalize([0.5], [0.5])) training_size = deg_pipeline.degrade_opt['gt_size'] image_transforms = transforms.Compose(augment_transforms) train_transforms = transforms.Compose(torch_transforms) train_resize = transforms.Resize(training_size, interpolation=transforms.InterpolationMode.BILINEAR) train_crop = transforms.RandomCrop(training_size) def preprocess_train(examples): raw_images = [] for img_data in examples[args.image_column]: raw_images.append(Image.open(img_data).convert("RGB")) # Image stack. images = [] original_sizes = [] crop_top_lefts = [] # Degradation kernels stack. kernel = [] kernel2 = [] sinc_kernel = [] for raw_image in raw_images: raw_image = image_transforms(raw_image) original_sizes.append((raw_image.height, raw_image.width)) # Resize smaller edge. raw_image = train_resize(raw_image) # Crop to training size. y1, x1, h, w = train_crop.get_params(raw_image, (training_size, training_size)) raw_image = crop(raw_image, y1, x1, h, w) crop_top_left = (y1, x1) crop_top_lefts.append(crop_top_left) image = train_transforms(raw_image) images.append(image) k, k2, sk = deg_pipeline.get_kernel() kernel.append(k) kernel2.append(k2) sinc_kernel.append(sk) examples["images"] = images examples["original_sizes"] = original_sizes examples["crop_top_lefts"] = crop_top_lefts examples["kernel"] = kernel examples["kernel2"] = kernel2 examples["sinc_kernel"] = sinc_kernel return examples with accelerator.main_process_first(): dataset = dataset.with_transform(preprocess_train) return dataset def collate_fn(examples): images = torch.stack([example["images"] for example in examples]) images = images.to(memory_format=torch.contiguous_format).float() kernel = torch.stack([example["kernel"] for example in examples]) kernel = kernel.to(memory_format=torch.contiguous_format).float() kernel2 = torch.stack([example["kernel2"] for example in examples]) kernel2 = kernel2.to(memory_format=torch.contiguous_format).float() sinc_kernel = torch.stack([example["sinc_kernel"] for example in examples]) sinc_kernel = sinc_kernel.to(memory_format=torch.contiguous_format).float() original_sizes = [example["original_sizes"] for example in examples] crop_top_lefts = [example["crop_top_lefts"] for example in examples] prompts = [] for example in examples: prompts.append(example[args.caption_column]) if args.caption_column in example else prompts.append("") return { "images": images, "text": prompts, "kernel": kernel, "kernel2": kernel2, "sinc_kernel": sinc_kernel, "original_sizes": original_sizes, "crop_top_lefts": crop_top_lefts, } def encode_prompt(prompt_batch, text_encoders, tokenizers, is_train=True): prompt_embeds_list = [] captions = [] for caption in prompt_batch: if isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) with torch.no_grad(): for tokenizer, text_encoder in zip(tokenizers, text_encoders): text_inputs = tokenizer( captions, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids prompt_embeds = text_encoder( text_input_ids.to(text_encoder.device), output_hidden_states=True, ) # We are only ALWAYS interested in the pooled output of the final text encoder pooled_prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds.hidden_states[-2] bs_embed, seq_len, _ = prompt_embeds.shape prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) return prompt_embeds, pooled_prompt_embeds def importance_sampling_fn(t, max_t, alpha): """Importance Sampling Function f(t)""" return 1 / max_t * (1 - alpha * np.cos(np.pi * t / max_t)) def extract_into_tensor(a, t, x_shape): b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) def tensor_to_pil(images): """ Convert image tensor or a batch of image tensors to PIL image(s). """ images = (images + 1) / 2 images_np = images.detach().cpu().numpy() if images_np.ndim == 4: images_np = np.transpose(images_np, (0, 2, 3, 1)) elif images_np.ndim == 3: images_np = np.transpose(images_np, (1, 2, 0)) images_np = images_np[None, ...] images_np = (images_np * 255).round().astype("uint8") if images_np.shape[-1] == 1: # special case for grayscale (single channel) images pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images_np] else: pil_images = [Image.fromarray(image[:, :, :3]) for image in images_np] return pil_images def save_np_to_image(img_np, save_dir): img_np = np.transpose(img_np, (0, 2, 3, 1)) img_np = (img_np * 255).astype(np.uint8) img_np = Image.fromarray(img_np[0]) img_np.save(save_dir) def seperate_SFT_params_from_unet(unet): params = [] non_params = [] for name, param in unet.named_parameters(): if "SFT" in name: params.append(param) else: non_params.append(param) return params, non_params def seperate_lora_params_from_unet(unet): keys = [] frozen_keys = [] for name, param in unet.named_parameters(): if "lora" in name: keys.append(param) else: frozen_keys.append(param) return keys, frozen_keys def seperate_ip_params_from_unet(unet): ip_params = [] non_ip_params = [] for name, param in unet.named_parameters(): if "encoder_hid_proj." in name or "_ip." in name: ip_params.append(param) elif "attn" in name and "processor" in name: if "ip" in name or "ln" in name: ip_params.append(param) else: non_ip_params.append(param) return ip_params, non_ip_params def seperate_ref_params_from_unet(unet): ip_params = [] non_ip_params = [] for name, param in unet.named_parameters(): if "encoder_hid_proj." in name or "_ip." in name: ip_params.append(param) elif "attn" in name and "processor" in name: if "ip" in name or "ln" in name: ip_params.append(param) elif "extract" in name: ip_params.append(param) else: non_ip_params.append(param) return ip_params, non_ip_params def seperate_ip_modules_from_unet(unet): ip_modules = [] non_ip_modules = [] for name, module in unet.named_modules(): if "encoder_hid_proj" in name or "attn2.processor" in name: ip_modules.append(module) else: non_ip_modules.append(module) return ip_modules, non_ip_modules def seperate_SFT_keys_from_unet(unet): keys = [] non_keys = [] for name, param in unet.named_parameters(): if "SFT" in name: keys.append(name) else: non_keys.append(name) return keys, non_keys def seperate_ip_keys_from_unet(unet): keys = [] non_keys = [] for name, param in unet.named_parameters(): if "encoder_hid_proj." in name or "_ip." in name: keys.append(name) elif "attn" in name and "processor" in name: if "ip" in name or "ln" in name: keys.append(name) else: non_keys.append(name) return keys, non_keys