# Open Source Model Licensed under the Apache License Version 2.0 and Other Licenses of the Third-Party Components therein: # The below Model in this distribution may have been modified by THL A29 Limited ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. # The below software and/or models in this distribution may have been # modified by THL A29 Limited ("Tencent Modifications"). # All Tencent Modifications are Copyright (C) THL A29 Limited. # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import torch from .utils import seed_everything, timing_decorator, auto_amp_inference from .utils import get_parameter_number, set_parameter_grad_false from diffusers import HunyuanDiTPipeline, AutoPipelineForText2Image class Text2Image(): def __init__(self, pretrain="weights/hunyuanDiT", device="cuda:0", save_memory=False): ''' save_memory: if GPU memory is low, can set it ''' self.save_memory = save_memory self.device = device self.pipe = AutoPipelineForText2Image.from_pretrained( pretrain, torch_dtype = torch.float16, enable_pag = True, pag_applied_layers = ["blocks.(16|17|18|19)"] ) set_parameter_grad_false(self.pipe.transformer) print('text2image transformer model', get_parameter_number(self.pipe.transformer)) if not save_memory: self.pipe = self.pipe.to(device) self.neg_txt = "文本,特写,裁剪,出框,最差质量,低质量,JPEG伪影,PGLY,重复,病态,残缺,多余的手指,变异的手," \ "画得不好的手,画得不好的脸,变异,畸形,模糊,脱水,糟糕的解剖学,糟糕的比例,多余的肢体,克隆的脸," \ "毁容,恶心的比例,畸形的肢体,缺失的手臂,缺失的腿,额外的手臂,额外的腿,融合的手指,手指太多,长脖子" @torch.no_grad() @timing_decorator('text to image') @auto_amp_inference def __call__(self, *args, **kwargs): if self.save_memory: self.pipe = self.pipe.to(self.device) torch.cuda.empty_cache() res = self.call(*args, **kwargs) self.pipe = self.pipe.to("cpu") else: res = self.call(*args, **kwargs) torch.cuda.empty_cache() return res def call(self, prompt, seed=0, steps=25): ''' inputs: prompr: str seed: int steps: int return: rgb: PIL.Image ''' prompt = prompt + ",白色背景,3D风格,最佳质量" seed_everything(seed) generator = torch.Generator(device=self.device) if seed is not None: generator = generator.manual_seed(int(seed)) rgb = self.pipe(prompt=prompt, negative_prompt=self.neg_txt, num_inference_steps=steps, pag_scale=1.3, width=1024, height=1024, generator=generator, return_dict=False)[0][0] torch.cuda.empty_cache() return rgb