Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import random | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from basicsr.ops.fused_act import FusedLeakyReLU, fused_leaky_relu | |
from basicsr.ops.upfirdn2d import upfirdn2d | |
from basicsr.utils.registry import ARCH_REGISTRY | |
class NormStyleCode(nn.Module): | |
def forward(self, x): | |
"""Normalize the style codes. | |
Args: | |
x (Tensor): Style codes with shape (b, c). | |
Returns: | |
Tensor: Normalized tensor. | |
""" | |
return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8) | |
def make_resample_kernel(k): | |
"""Make resampling kernel for UpFirDn. | |
Args: | |
k (list[int]): A list indicating the 1D resample kernel magnitude. | |
Returns: | |
Tensor: 2D resampled kernel. | |
""" | |
k = torch.tensor(k, dtype=torch.float32) | |
if k.ndim == 1: | |
k = k[None, :] * k[:, None] # to 2D kernel, outer product | |
# normalize | |
k /= k.sum() | |
return k | |
class UpFirDnUpsample(nn.Module): | |
"""Upsample, FIR filter, and downsample (upsampole version). | |
References: | |
1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html # noqa: E501 | |
2. http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/signal/upfirdn.html # noqa: E501 | |
Args: | |
resample_kernel (list[int]): A list indicating the 1D resample kernel | |
magnitude. | |
factor (int): Upsampling scale factor. Default: 2. | |
""" | |
def __init__(self, resample_kernel, factor=2): | |
super(UpFirDnUpsample, self).__init__() | |
self.kernel = make_resample_kernel(resample_kernel) * (factor**2) | |
self.factor = factor | |
pad = self.kernel.shape[0] - factor | |
self.pad = ((pad + 1) // 2 + factor - 1, pad // 2) | |
def forward(self, x): | |
out = upfirdn2d(x, self.kernel.type_as(x), up=self.factor, down=1, pad=self.pad) | |
return out | |
def __repr__(self): | |
return (f'{self.__class__.__name__}(factor={self.factor})') | |
class UpFirDnDownsample(nn.Module): | |
"""Upsample, FIR filter, and downsample (downsampole version). | |
Args: | |
resample_kernel (list[int]): A list indicating the 1D resample kernel | |
magnitude. | |
factor (int): Downsampling scale factor. Default: 2. | |
""" | |
def __init__(self, resample_kernel, factor=2): | |
super(UpFirDnDownsample, self).__init__() | |
self.kernel = make_resample_kernel(resample_kernel) | |
self.factor = factor | |
pad = self.kernel.shape[0] - factor | |
self.pad = ((pad + 1) // 2, pad // 2) | |
def forward(self, x): | |
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=self.factor, pad=self.pad) | |
return out | |
def __repr__(self): | |
return (f'{self.__class__.__name__}(factor={self.factor})') | |
class UpFirDnSmooth(nn.Module): | |
"""Upsample, FIR filter, and downsample (smooth version). | |
Args: | |
resample_kernel (list[int]): A list indicating the 1D resample kernel | |
magnitude. | |
upsample_factor (int): Upsampling scale factor. Default: 1. | |
downsample_factor (int): Downsampling scale factor. Default: 1. | |
kernel_size (int): Kernel size: Default: 1. | |
""" | |
def __init__(self, resample_kernel, upsample_factor=1, downsample_factor=1, kernel_size=1): | |
super(UpFirDnSmooth, self).__init__() | |
self.upsample_factor = upsample_factor | |
self.downsample_factor = downsample_factor | |
self.kernel = make_resample_kernel(resample_kernel) | |
if upsample_factor > 1: | |
self.kernel = self.kernel * (upsample_factor**2) | |
if upsample_factor > 1: | |
pad = (self.kernel.shape[0] - upsample_factor) - (kernel_size - 1) | |
self.pad = ((pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1) | |
elif downsample_factor > 1: | |
pad = (self.kernel.shape[0] - downsample_factor) + (kernel_size - 1) | |
self.pad = ((pad + 1) // 2, pad // 2) | |
else: | |
raise NotImplementedError | |
def forward(self, x): | |
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad) | |
return out | |
def __repr__(self): | |
return (f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}' | |
f', downsample_factor={self.downsample_factor})') | |
class EqualLinear(nn.Module): | |
"""Equalized Linear as StyleGAN2. | |
Args: | |
in_channels (int): Size of each sample. | |
out_channels (int): Size of each output sample. | |
bias (bool): If set to ``False``, the layer will not learn an additive | |
bias. Default: ``True``. | |
bias_init_val (float): Bias initialized value. Default: 0. | |
lr_mul (float): Learning rate multiplier. Default: 1. | |
activation (None | str): The activation after ``linear`` operation. | |
Supported: 'fused_lrelu', None. Default: None. | |
""" | |
def __init__(self, in_channels, out_channels, bias=True, bias_init_val=0, lr_mul=1, activation=None): | |
super(EqualLinear, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.lr_mul = lr_mul | |
self.activation = activation | |
if self.activation not in ['fused_lrelu', None]: | |
raise ValueError(f'Wrong activation value in EqualLinear: {activation}' | |
"Supported ones are: ['fused_lrelu', None].") | |
self.scale = (1 / math.sqrt(in_channels)) * lr_mul | |
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul)) | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val)) | |
else: | |
self.register_parameter('bias', None) | |
def forward(self, x): | |
if self.bias is None: | |
bias = None | |
else: | |
bias = self.bias * self.lr_mul | |
if self.activation == 'fused_lrelu': | |
out = F.linear(x, self.weight * self.scale) | |
out = fused_leaky_relu(out, bias) | |
else: | |
out = F.linear(x, self.weight * self.scale, bias=bias) | |
return out | |
def __repr__(self): | |
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, ' | |
f'out_channels={self.out_channels}, bias={self.bias is not None})') | |
class ModulatedConv2d(nn.Module): | |
"""Modulated Conv2d used in StyleGAN2. | |
There is no bias in ModulatedConv2d. | |
Args: | |
in_channels (int): Channel number of the input. | |
out_channels (int): Channel number of the output. | |
kernel_size (int): Size of the convolving kernel. | |
num_style_feat (int): Channel number of style features. | |
demodulate (bool): Whether to demodulate in the conv layer. | |
Default: True. | |
sample_mode (str | None): Indicating 'upsample', 'downsample' or None. | |
Default: None. | |
resample_kernel (list[int]): A list indicating the 1D resample kernel | |
magnitude. Default: (1, 3, 3, 1). | |
eps (float): A value added to the denominator for numerical stability. | |
Default: 1e-8. | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
num_style_feat, | |
demodulate=True, | |
sample_mode=None, | |
resample_kernel=(1, 3, 3, 1), | |
eps=1e-8): | |
super(ModulatedConv2d, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = kernel_size | |
self.demodulate = demodulate | |
self.sample_mode = sample_mode | |
self.eps = eps | |
if self.sample_mode == 'upsample': | |
self.smooth = UpFirDnSmooth( | |
resample_kernel, upsample_factor=2, downsample_factor=1, kernel_size=kernel_size) | |
elif self.sample_mode == 'downsample': | |
self.smooth = UpFirDnSmooth( | |
resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size) | |
elif self.sample_mode is None: | |
pass | |
else: | |
raise ValueError(f'Wrong sample mode {self.sample_mode}, ' | |
"supported ones are ['upsample', 'downsample', None].") | |
self.scale = 1 / math.sqrt(in_channels * kernel_size**2) | |
# modulation inside each modulated conv | |
self.modulation = EqualLinear( | |
num_style_feat, in_channels, bias=True, bias_init_val=1, lr_mul=1, activation=None) | |
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels, kernel_size, kernel_size)) | |
self.padding = kernel_size // 2 | |
def forward(self, x, style): | |
"""Forward function. | |
Args: | |
x (Tensor): Tensor with shape (b, c, h, w). | |
style (Tensor): Tensor with shape (b, num_style_feat). | |
Returns: | |
Tensor: Modulated tensor after convolution. | |
""" | |
b, c, h, w = x.shape # c = c_in | |
# weight modulation | |
style = self.modulation(style).view(b, 1, c, 1, 1) | |
# self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1) | |
weight = self.scale * self.weight * style # (b, c_out, c_in, k, k) | |
if self.demodulate: | |
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps) | |
weight = weight * demod.view(b, self.out_channels, 1, 1, 1) | |
weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size) | |
if self.sample_mode == 'upsample': | |
x = x.view(1, b * c, h, w) | |
weight = weight.view(b, self.out_channels, c, self.kernel_size, self.kernel_size) | |
weight = weight.transpose(1, 2).reshape(b * c, self.out_channels, self.kernel_size, self.kernel_size) | |
out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b) | |
out = out.view(b, self.out_channels, *out.shape[2:4]) | |
out = self.smooth(out) | |
elif self.sample_mode == 'downsample': | |
x = self.smooth(x) | |
x = x.view(1, b * c, *x.shape[2:4]) | |
out = F.conv2d(x, weight, padding=0, stride=2, groups=b) | |
out = out.view(b, self.out_channels, *out.shape[2:4]) | |
else: | |
x = x.view(1, b * c, h, w) | |
# weight: (b*c_out, c_in, k, k), groups=b | |
out = F.conv2d(x, weight, padding=self.padding, groups=b) | |
out = out.view(b, self.out_channels, *out.shape[2:4]) | |
return out | |
def __repr__(self): | |
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, ' | |
f'out_channels={self.out_channels}, ' | |
f'kernel_size={self.kernel_size}, ' | |
f'demodulate={self.demodulate}, sample_mode={self.sample_mode})') | |
class StyleConv(nn.Module): | |
"""Style conv. | |
Args: | |
in_channels (int): Channel number of the input. | |
out_channels (int): Channel number of the output. | |
kernel_size (int): Size of the convolving kernel. | |
num_style_feat (int): Channel number of style features. | |
demodulate (bool): Whether demodulate in the conv layer. Default: True. | |
sample_mode (str | None): Indicating 'upsample', 'downsample' or None. | |
Default: None. | |
resample_kernel (list[int]): A list indicating the 1D resample kernel | |
magnitude. Default: (1, 3, 3, 1). | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
num_style_feat, | |
demodulate=True, | |
sample_mode=None, | |
resample_kernel=(1, 3, 3, 1)): | |
super(StyleConv, self).__init__() | |
self.modulated_conv = ModulatedConv2d( | |
in_channels, | |
out_channels, | |
kernel_size, | |
num_style_feat, | |
demodulate=demodulate, | |
sample_mode=sample_mode, | |
resample_kernel=resample_kernel) | |
self.weight = nn.Parameter(torch.zeros(1)) # for noise injection | |
self.activate = FusedLeakyReLU(out_channels) | |
def forward(self, x, style, noise=None): | |
# modulate | |
out = self.modulated_conv(x, style) | |
# noise injection | |
if noise is None: | |
b, _, h, w = out.shape | |
noise = out.new_empty(b, 1, h, w).normal_() | |
out = out + self.weight * noise | |
# activation (with bias) | |
out = self.activate(out) | |
return out | |
class ToRGB(nn.Module): | |
"""To RGB from features. | |
Args: | |
in_channels (int): Channel number of input. | |
num_style_feat (int): Channel number of style features. | |
upsample (bool): Whether to upsample. Default: True. | |
resample_kernel (list[int]): A list indicating the 1D resample kernel | |
magnitude. Default: (1, 3, 3, 1). | |
""" | |
def __init__(self, in_channels, num_style_feat, upsample=True, resample_kernel=(1, 3, 3, 1)): | |
super(ToRGB, self).__init__() | |
if upsample: | |
self.upsample = UpFirDnUpsample(resample_kernel, factor=2) | |
else: | |
self.upsample = None | |
self.modulated_conv = ModulatedConv2d( | |
in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None) | |
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) | |
def forward(self, x, style, skip=None): | |
"""Forward function. | |
Args: | |
x (Tensor): Feature tensor with shape (b, c, h, w). | |
style (Tensor): Tensor with shape (b, num_style_feat). | |
skip (Tensor): Base/skip tensor. Default: None. | |
Returns: | |
Tensor: RGB images. | |
""" | |
out = self.modulated_conv(x, style) | |
out = out + self.bias | |
if skip is not None: | |
if self.upsample: | |
skip = self.upsample(skip) | |
out = out + skip | |
return out | |
class ConstantInput(nn.Module): | |
"""Constant input. | |
Args: | |
num_channel (int): Channel number of constant input. | |
size (int): Spatial size of constant input. | |
""" | |
def __init__(self, num_channel, size): | |
super(ConstantInput, self).__init__() | |
self.weight = nn.Parameter(torch.randn(1, num_channel, size, size)) | |
def forward(self, batch): | |
out = self.weight.repeat(batch, 1, 1, 1) | |
return out | |
class StyleGAN2Generator(nn.Module): | |
"""StyleGAN2 Generator. | |
Args: | |
out_size (int): The spatial size of outputs. | |
num_style_feat (int): Channel number of style features. Default: 512. | |
num_mlp (int): Layer number of MLP style layers. Default: 8. | |
channel_multiplier (int): Channel multiplier for large networks of | |
StyleGAN2. Default: 2. | |
resample_kernel (list[int]): A list indicating the 1D resample kernel | |
magnitude. A cross production will be applied to extent 1D resample | |
kernel to 2D resample kernel. Default: (1, 3, 3, 1). | |
lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01. | |
narrow (float): Narrow ratio for channels. Default: 1.0. | |
""" | |
def __init__(self, | |
out_size, | |
num_style_feat=512, | |
num_mlp=8, | |
channel_multiplier=2, | |
resample_kernel=(1, 3, 3, 1), | |
lr_mlp=0.01, | |
narrow=1): | |
super(StyleGAN2Generator, self).__init__() | |
# Style MLP layers | |
self.num_style_feat = num_style_feat | |
style_mlp_layers = [NormStyleCode()] | |
for i in range(num_mlp): | |
style_mlp_layers.append( | |
EqualLinear( | |
num_style_feat, num_style_feat, bias=True, bias_init_val=0, lr_mul=lr_mlp, | |
activation='fused_lrelu')) | |
self.style_mlp = nn.Sequential(*style_mlp_layers) | |
channels = { | |
'4': int(512 * narrow), | |
'8': int(512 * narrow), | |
'16': int(512 * narrow), | |
'32': int(512 * narrow), | |
'64': int(256 * channel_multiplier * narrow), | |
'128': int(128 * channel_multiplier * narrow), | |
'256': int(64 * channel_multiplier * narrow), | |
'512': int(32 * channel_multiplier * narrow), | |
'1024': int(16 * channel_multiplier * narrow) | |
} | |
self.channels = channels | |
self.constant_input = ConstantInput(channels['4'], size=4) | |
self.style_conv1 = StyleConv( | |
channels['4'], | |
channels['4'], | |
kernel_size=3, | |
num_style_feat=num_style_feat, | |
demodulate=True, | |
sample_mode=None, | |
resample_kernel=resample_kernel) | |
self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False, resample_kernel=resample_kernel) | |
self.log_size = int(math.log(out_size, 2)) | |
self.num_layers = (self.log_size - 2) * 2 + 1 | |
self.num_latent = self.log_size * 2 - 2 | |
self.style_convs = nn.ModuleList() | |
self.to_rgbs = nn.ModuleList() | |
self.noises = nn.Module() | |
in_channels = channels['4'] | |
# noise | |
for layer_idx in range(self.num_layers): | |
resolution = 2**((layer_idx + 5) // 2) | |
shape = [1, 1, resolution, resolution] | |
self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape)) | |
# style convs and to_rgbs | |
for i in range(3, self.log_size + 1): | |
out_channels = channels[f'{2**i}'] | |
self.style_convs.append( | |
StyleConv( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
num_style_feat=num_style_feat, | |
demodulate=True, | |
sample_mode='upsample', | |
resample_kernel=resample_kernel, | |
)) | |
self.style_convs.append( | |
StyleConv( | |
out_channels, | |
out_channels, | |
kernel_size=3, | |
num_style_feat=num_style_feat, | |
demodulate=True, | |
sample_mode=None, | |
resample_kernel=resample_kernel)) | |
self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True, resample_kernel=resample_kernel)) | |
in_channels = out_channels | |
def make_noise(self): | |
"""Make noise for noise injection.""" | |
device = self.constant_input.weight.device | |
noises = [torch.randn(1, 1, 4, 4, device=device)] | |
for i in range(3, self.log_size + 1): | |
for _ in range(2): | |
noises.append(torch.randn(1, 1, 2**i, 2**i, device=device)) | |
return noises | |
def get_latent(self, x): | |
return self.style_mlp(x) | |
def mean_latent(self, num_latent): | |
latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device) | |
latent = self.style_mlp(latent_in).mean(0, keepdim=True) | |
return latent | |
def forward(self, | |
styles, | |
input_is_latent=False, | |
noise=None, | |
randomize_noise=True, | |
truncation=1, | |
truncation_latent=None, | |
inject_index=None, | |
return_latents=False): | |
"""Forward function for StyleGAN2Generator. | |
Args: | |
styles (list[Tensor]): Sample codes of styles. | |
input_is_latent (bool): Whether input is latent style. | |
Default: False. | |
noise (Tensor | None): Input noise or None. Default: None. | |
randomize_noise (bool): Randomize noise, used when 'noise' is | |
False. Default: True. | |
truncation (float): TODO. Default: 1. | |
truncation_latent (Tensor | None): TODO. Default: None. | |
inject_index (int | None): The injection index for mixing noise. | |
Default: None. | |
return_latents (bool): Whether to return style latents. | |
Default: False. | |
""" | |
# style codes -> latents with Style MLP layer | |
if not input_is_latent: | |
styles = [self.style_mlp(s) for s in styles] | |
# noises | |
if noise is None: | |
if randomize_noise: | |
noise = [None] * self.num_layers # for each style conv layer | |
else: # use the stored noise | |
noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)] | |
# style truncation | |
if truncation < 1: | |
style_truncation = [] | |
for style in styles: | |
style_truncation.append(truncation_latent + truncation * (style - truncation_latent)) | |
styles = style_truncation | |
# get style latent with injection | |
if len(styles) == 1: | |
inject_index = self.num_latent | |
if styles[0].ndim < 3: | |
# repeat latent code for all the layers | |
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
else: # used for encoder with different latent code for each layer | |
latent = styles[0] | |
elif len(styles) == 2: # mixing noises | |
if inject_index is None: | |
inject_index = random.randint(1, self.num_latent - 1) | |
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1) | |
latent = torch.cat([latent1, latent2], 1) | |
# main generation | |
out = self.constant_input(latent.shape[0]) | |
out = self.style_conv1(out, latent[:, 0], noise=noise[0]) | |
skip = self.to_rgb1(out, latent[:, 1]) | |
i = 1 | |
for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2], | |
noise[2::2], self.to_rgbs): | |
out = conv1(out, latent[:, i], noise=noise1) | |
out = conv2(out, latent[:, i + 1], noise=noise2) | |
skip = to_rgb(out, latent[:, i + 2], skip) | |
i += 2 | |
image = skip | |
if return_latents: | |
return image, latent | |
else: | |
return image, None | |
class ScaledLeakyReLU(nn.Module): | |
"""Scaled LeakyReLU. | |
Args: | |
negative_slope (float): Negative slope. Default: 0.2. | |
""" | |
def __init__(self, negative_slope=0.2): | |
super(ScaledLeakyReLU, self).__init__() | |
self.negative_slope = negative_slope | |
def forward(self, x): | |
out = F.leaky_relu(x, negative_slope=self.negative_slope) | |
return out * math.sqrt(2) | |
class EqualConv2d(nn.Module): | |
"""Equalized Linear as StyleGAN2. | |
Args: | |
in_channels (int): Channel number of the input. | |
out_channels (int): Channel number of the output. | |
kernel_size (int): Size of the convolving kernel. | |
stride (int): Stride of the convolution. Default: 1 | |
padding (int): Zero-padding added to both sides of the input. | |
Default: 0. | |
bias (bool): If ``True``, adds a learnable bias to the output. | |
Default: ``True``. | |
bias_init_val (float): Bias initialized value. Default: 0. | |
""" | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True, bias_init_val=0): | |
super(EqualConv2d, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.padding = padding | |
self.scale = 1 / math.sqrt(in_channels * kernel_size**2) | |
self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size)) | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val)) | |
else: | |
self.register_parameter('bias', None) | |
def forward(self, x): | |
out = F.conv2d( | |
x, | |
self.weight * self.scale, | |
bias=self.bias, | |
stride=self.stride, | |
padding=self.padding, | |
) | |
return out | |
def __repr__(self): | |
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, ' | |
f'out_channels={self.out_channels}, ' | |
f'kernel_size={self.kernel_size},' | |
f' stride={self.stride}, padding={self.padding}, ' | |
f'bias={self.bias is not None})') | |
class ConvLayer(nn.Sequential): | |
"""Conv Layer used in StyleGAN2 Discriminator. | |
Args: | |
in_channels (int): Channel number of the input. | |
out_channels (int): Channel number of the output. | |
kernel_size (int): Kernel size. | |
downsample (bool): Whether downsample by a factor of 2. | |
Default: False. | |
resample_kernel (list[int]): A list indicating the 1D resample | |
kernel magnitude. A cross production will be applied to | |
extent 1D resample kernel to 2D resample kernel. | |
Default: (1, 3, 3, 1). | |
bias (bool): Whether with bias. Default: True. | |
activate (bool): Whether use activateion. Default: True. | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
downsample=False, | |
resample_kernel=(1, 3, 3, 1), | |
bias=True, | |
activate=True): | |
layers = [] | |
# downsample | |
if downsample: | |
layers.append( | |
UpFirDnSmooth(resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size)) | |
stride = 2 | |
self.padding = 0 | |
else: | |
stride = 1 | |
self.padding = kernel_size // 2 | |
# conv | |
layers.append( | |
EqualConv2d( | |
in_channels, out_channels, kernel_size, stride=stride, padding=self.padding, bias=bias | |
and not activate)) | |
# activation | |
if activate: | |
if bias: | |
layers.append(FusedLeakyReLU(out_channels)) | |
else: | |
layers.append(ScaledLeakyReLU(0.2)) | |
super(ConvLayer, self).__init__(*layers) | |
class ResBlock(nn.Module): | |
"""Residual block used in StyleGAN2 Discriminator. | |
Args: | |
in_channels (int): Channel number of the input. | |
out_channels (int): Channel number of the output. | |
resample_kernel (list[int]): A list indicating the 1D resample | |
kernel magnitude. A cross production will be applied to | |
extent 1D resample kernel to 2D resample kernel. | |
Default: (1, 3, 3, 1). | |
""" | |
def __init__(self, in_channels, out_channels, resample_kernel=(1, 3, 3, 1)): | |
super(ResBlock, self).__init__() | |
self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True) | |
self.conv2 = ConvLayer( | |
in_channels, out_channels, 3, downsample=True, resample_kernel=resample_kernel, bias=True, activate=True) | |
self.skip = ConvLayer( | |
in_channels, out_channels, 1, downsample=True, resample_kernel=resample_kernel, bias=False, activate=False) | |
def forward(self, x): | |
out = self.conv1(x) | |
out = self.conv2(out) | |
skip = self.skip(x) | |
out = (out + skip) / math.sqrt(2) | |
return out | |
class StyleGAN2Discriminator(nn.Module): | |
"""StyleGAN2 Discriminator. | |
Args: | |
out_size (int): The spatial size of outputs. | |
channel_multiplier (int): Channel multiplier for large networks of | |
StyleGAN2. Default: 2. | |
resample_kernel (list[int]): A list indicating the 1D resample kernel | |
magnitude. A cross production will be applied to extent 1D resample | |
kernel to 2D resample kernel. Default: (1, 3, 3, 1). | |
stddev_group (int): For group stddev statistics. Default: 4. | |
narrow (float): Narrow ratio for channels. Default: 1.0. | |
""" | |
def __init__(self, out_size, channel_multiplier=2, resample_kernel=(1, 3, 3, 1), stddev_group=4, narrow=1): | |
super(StyleGAN2Discriminator, self).__init__() | |
channels = { | |
'4': int(512 * narrow), | |
'8': int(512 * narrow), | |
'16': int(512 * narrow), | |
'32': int(512 * narrow), | |
'64': int(256 * channel_multiplier * narrow), | |
'128': int(128 * channel_multiplier * narrow), | |
'256': int(64 * channel_multiplier * narrow), | |
'512': int(32 * channel_multiplier * narrow), | |
'1024': int(16 * channel_multiplier * narrow) | |
} | |
log_size = int(math.log(out_size, 2)) | |
conv_body = [ConvLayer(3, channels[f'{out_size}'], 1, bias=True, activate=True)] | |
in_channels = channels[f'{out_size}'] | |
for i in range(log_size, 2, -1): | |
out_channels = channels[f'{2**(i - 1)}'] | |
conv_body.append(ResBlock(in_channels, out_channels, resample_kernel)) | |
in_channels = out_channels | |
self.conv_body = nn.Sequential(*conv_body) | |
self.final_conv = ConvLayer(in_channels + 1, channels['4'], 3, bias=True, activate=True) | |
self.final_linear = nn.Sequential( | |
EqualLinear( | |
channels['4'] * 4 * 4, channels['4'], bias=True, bias_init_val=0, lr_mul=1, activation='fused_lrelu'), | |
EqualLinear(channels['4'], 1, bias=True, bias_init_val=0, lr_mul=1, activation=None), | |
) | |
self.stddev_group = stddev_group | |
self.stddev_feat = 1 | |
def forward(self, x): | |
out = self.conv_body(x) | |
b, c, h, w = out.shape | |
# concatenate a group stddev statistics to out | |
group = min(b, self.stddev_group) # Minibatch must be divisible by (or smaller than) group_size | |
stddev = out.view(group, -1, self.stddev_feat, c // self.stddev_feat, h, w) | |
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) | |
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) | |
stddev = stddev.repeat(group, 1, h, w) | |
out = torch.cat([out, stddev], 1) | |
out = self.final_conv(out) | |
out = out.view(b, -1) | |
out = self.final_linear(out) | |
return out | |