Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision | |
import warnings | |
from basicsr.archs.arch_util import flow_warp | |
from basicsr.archs.basicvsr_arch import ConvResidualBlocks | |
from basicsr.archs.spynet_arch import SpyNet | |
from basicsr.ops.dcn import ModulatedDeformConvPack | |
from basicsr.utils.registry import ARCH_REGISTRY | |
class BasicVSRPlusPlus(nn.Module): | |
"""BasicVSR++ network structure. | |
Support either x4 upsampling or same size output. Since DCN is used in this | |
model, it can only be used with CUDA enabled. If CUDA is not enabled, | |
feature alignment will be skipped. Besides, we adopt the official DCN | |
implementation and the version of torch need to be higher than 1.9. | |
``Paper: BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment`` | |
Args: | |
mid_channels (int, optional): Channel number of the intermediate | |
features. Default: 64. | |
num_blocks (int, optional): The number of residual blocks in each | |
propagation branch. Default: 7. | |
max_residue_magnitude (int): The maximum magnitude of the offset | |
residue (Eq. 6 in paper). Default: 10. | |
is_low_res_input (bool, optional): Whether the input is low-resolution | |
or not. If False, the output resolution is equal to the input | |
resolution. Default: True. | |
spynet_path (str): Path to the pretrained weights of SPyNet. Default: None. | |
cpu_cache_length (int, optional): When the length of sequence is larger | |
than this value, the intermediate features are sent to CPU. This | |
saves GPU memory, but slows down the inference speed. You can | |
increase this number if you have a GPU with large memory. | |
Default: 100. | |
""" | |
def __init__(self, | |
mid_channels=64, | |
num_blocks=7, | |
max_residue_magnitude=10, | |
is_low_res_input=True, | |
spynet_path=None, | |
cpu_cache_length=100): | |
super().__init__() | |
self.mid_channels = mid_channels | |
self.is_low_res_input = is_low_res_input | |
self.cpu_cache_length = cpu_cache_length | |
# optical flow | |
self.spynet = SpyNet(spynet_path) | |
# feature extraction module | |
if is_low_res_input: | |
self.feat_extract = ConvResidualBlocks(3, mid_channels, 5) | |
else: | |
self.feat_extract = nn.Sequential( | |
nn.Conv2d(3, mid_channels, 3, 2, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True), | |
nn.Conv2d(mid_channels, mid_channels, 3, 2, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True), | |
ConvResidualBlocks(mid_channels, mid_channels, 5)) | |
# propagation branches | |
self.deform_align = nn.ModuleDict() | |
self.backbone = nn.ModuleDict() | |
modules = ['backward_1', 'forward_1', 'backward_2', 'forward_2'] | |
for i, module in enumerate(modules): | |
if torch.cuda.is_available(): | |
self.deform_align[module] = SecondOrderDeformableAlignment( | |
2 * mid_channels, | |
mid_channels, | |
3, | |
padding=1, | |
deformable_groups=16, | |
max_residue_magnitude=max_residue_magnitude) | |
self.backbone[module] = ConvResidualBlocks((2 + i) * mid_channels, mid_channels, num_blocks) | |
# upsampling module | |
self.reconstruction = ConvResidualBlocks(5 * mid_channels, mid_channels, 5) | |
self.upconv1 = nn.Conv2d(mid_channels, mid_channels * 4, 3, 1, 1, bias=True) | |
self.upconv2 = nn.Conv2d(mid_channels, 64 * 4, 3, 1, 1, bias=True) | |
self.pixel_shuffle = nn.PixelShuffle(2) | |
self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1) | |
self.conv_last = nn.Conv2d(64, 3, 3, 1, 1) | |
self.img_upsample = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False) | |
# activation function | |
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) | |
# check if the sequence is augmented by flipping | |
self.is_mirror_extended = False | |
if len(self.deform_align) > 0: | |
self.is_with_alignment = True | |
else: | |
self.is_with_alignment = False | |
warnings.warn('Deformable alignment module is not added. ' | |
'Probably your CUDA is not configured correctly. DCN can only ' | |
'be used with CUDA enabled. Alignment is skipped now.') | |
def check_if_mirror_extended(self, lqs): | |
"""Check whether the input is a mirror-extended sequence. | |
If mirror-extended, the i-th (i=0, ..., t-1) frame is equal to the (t-1-i)-th frame. | |
Args: | |
lqs (tensor): Input low quality (LQ) sequence with shape (n, t, c, h, w). | |
""" | |
if lqs.size(1) % 2 == 0: | |
lqs_1, lqs_2 = torch.chunk(lqs, 2, dim=1) | |
if torch.norm(lqs_1 - lqs_2.flip(1)) == 0: | |
self.is_mirror_extended = True | |
def compute_flow(self, lqs): | |
"""Compute optical flow using SPyNet for feature alignment. | |
Note that if the input is an mirror-extended sequence, 'flows_forward' | |
is not needed, since it is equal to 'flows_backward.flip(1)'. | |
Args: | |
lqs (tensor): Input low quality (LQ) sequence with | |
shape (n, t, c, h, w). | |
Return: | |
tuple(Tensor): Optical flow. 'flows_forward' corresponds to the flows used for forward-time propagation \ | |
(current to previous). 'flows_backward' corresponds to the flows used for backward-time \ | |
propagation (current to next). | |
""" | |
n, t, c, h, w = lqs.size() | |
lqs_1 = lqs[:, :-1, :, :, :].reshape(-1, c, h, w) | |
lqs_2 = lqs[:, 1:, :, :, :].reshape(-1, c, h, w) | |
flows_backward = self.spynet(lqs_1, lqs_2).view(n, t - 1, 2, h, w) | |
if self.is_mirror_extended: # flows_forward = flows_backward.flip(1) | |
flows_forward = flows_backward.flip(1) | |
else: | |
flows_forward = self.spynet(lqs_2, lqs_1).view(n, t - 1, 2, h, w) | |
if self.cpu_cache: | |
flows_backward = flows_backward.cpu() | |
flows_forward = flows_forward.cpu() | |
return flows_forward, flows_backward | |
def propagate(self, feats, flows, module_name): | |
"""Propagate the latent features throughout the sequence. | |
Args: | |
feats dict(list[tensor]): Features from previous branches. Each | |
component is a list of tensors with shape (n, c, h, w). | |
flows (tensor): Optical flows with shape (n, t - 1, 2, h, w). | |
module_name (str): The name of the propgation branches. Can either | |
be 'backward_1', 'forward_1', 'backward_2', 'forward_2'. | |
Return: | |
dict(list[tensor]): A dictionary containing all the propagated \ | |
features. Each key in the dictionary corresponds to a \ | |
propagation branch, which is represented by a list of tensors. | |
""" | |
n, t, _, h, w = flows.size() | |
frame_idx = range(0, t + 1) | |
flow_idx = range(-1, t) | |
mapping_idx = list(range(0, len(feats['spatial']))) | |
mapping_idx += mapping_idx[::-1] | |
if 'backward' in module_name: | |
frame_idx = frame_idx[::-1] | |
flow_idx = frame_idx | |
feat_prop = flows.new_zeros(n, self.mid_channels, h, w) | |
for i, idx in enumerate(frame_idx): | |
feat_current = feats['spatial'][mapping_idx[idx]] | |
if self.cpu_cache: | |
feat_current = feat_current.cuda() | |
feat_prop = feat_prop.cuda() | |
# second-order deformable alignment | |
if i > 0 and self.is_with_alignment: | |
flow_n1 = flows[:, flow_idx[i], :, :, :] | |
if self.cpu_cache: | |
flow_n1 = flow_n1.cuda() | |
cond_n1 = flow_warp(feat_prop, flow_n1.permute(0, 2, 3, 1)) | |
# initialize second-order features | |
feat_n2 = torch.zeros_like(feat_prop) | |
flow_n2 = torch.zeros_like(flow_n1) | |
cond_n2 = torch.zeros_like(cond_n1) | |
if i > 1: # second-order features | |
feat_n2 = feats[module_name][-2] | |
if self.cpu_cache: | |
feat_n2 = feat_n2.cuda() | |
flow_n2 = flows[:, flow_idx[i - 1], :, :, :] | |
if self.cpu_cache: | |
flow_n2 = flow_n2.cuda() | |
flow_n2 = flow_n1 + flow_warp(flow_n2, flow_n1.permute(0, 2, 3, 1)) | |
cond_n2 = flow_warp(feat_n2, flow_n2.permute(0, 2, 3, 1)) | |
# flow-guided deformable convolution | |
cond = torch.cat([cond_n1, feat_current, cond_n2], dim=1) | |
feat_prop = torch.cat([feat_prop, feat_n2], dim=1) | |
feat_prop = self.deform_align[module_name](feat_prop, cond, flow_n1, flow_n2) | |
# concatenate and residual blocks | |
feat = [feat_current] + [feats[k][idx] for k in feats if k not in ['spatial', module_name]] + [feat_prop] | |
if self.cpu_cache: | |
feat = [f.cuda() for f in feat] | |
feat = torch.cat(feat, dim=1) | |
feat_prop = feat_prop + self.backbone[module_name](feat) | |
feats[module_name].append(feat_prop) | |
if self.cpu_cache: | |
feats[module_name][-1] = feats[module_name][-1].cpu() | |
torch.cuda.empty_cache() | |
if 'backward' in module_name: | |
feats[module_name] = feats[module_name][::-1] | |
return feats | |
def upsample(self, lqs, feats): | |
"""Compute the output image given the features. | |
Args: | |
lqs (tensor): Input low quality (LQ) sequence with | |
shape (n, t, c, h, w). | |
feats (dict): The features from the propagation branches. | |
Returns: | |
Tensor: Output HR sequence with shape (n, t, c, 4h, 4w). | |
""" | |
outputs = [] | |
num_outputs = len(feats['spatial']) | |
mapping_idx = list(range(0, num_outputs)) | |
mapping_idx += mapping_idx[::-1] | |
for i in range(0, lqs.size(1)): | |
hr = [feats[k].pop(0) for k in feats if k != 'spatial'] | |
hr.insert(0, feats['spatial'][mapping_idx[i]]) | |
hr = torch.cat(hr, dim=1) | |
if self.cpu_cache: | |
hr = hr.cuda() | |
hr = self.reconstruction(hr) | |
hr = self.lrelu(self.pixel_shuffle(self.upconv1(hr))) | |
hr = self.lrelu(self.pixel_shuffle(self.upconv2(hr))) | |
hr = self.lrelu(self.conv_hr(hr)) | |
hr = self.conv_last(hr) | |
if self.is_low_res_input: | |
hr += self.img_upsample(lqs[:, i, :, :, :]) | |
else: | |
hr += lqs[:, i, :, :, :] | |
if self.cpu_cache: | |
hr = hr.cpu() | |
torch.cuda.empty_cache() | |
outputs.append(hr) | |
return torch.stack(outputs, dim=1) | |
def forward(self, lqs): | |
"""Forward function for BasicVSR++. | |
Args: | |
lqs (tensor): Input low quality (LQ) sequence with | |
shape (n, t, c, h, w). | |
Returns: | |
Tensor: Output HR sequence with shape (n, t, c, 4h, 4w). | |
""" | |
n, t, c, h, w = lqs.size() | |
# whether to cache the features in CPU | |
self.cpu_cache = True if t > self.cpu_cache_length else False | |
if self.is_low_res_input: | |
lqs_downsample = lqs.clone() | |
else: | |
lqs_downsample = F.interpolate( | |
lqs.view(-1, c, h, w), scale_factor=0.25, mode='bicubic').view(n, t, c, h // 4, w // 4) | |
# check whether the input is an extended sequence | |
self.check_if_mirror_extended(lqs) | |
feats = {} | |
# compute spatial features | |
if self.cpu_cache: | |
feats['spatial'] = [] | |
for i in range(0, t): | |
feat = self.feat_extract(lqs[:, i, :, :, :]).cpu() | |
feats['spatial'].append(feat) | |
torch.cuda.empty_cache() | |
else: | |
feats_ = self.feat_extract(lqs.view(-1, c, h, w)) | |
h, w = feats_.shape[2:] | |
feats_ = feats_.view(n, t, -1, h, w) | |
feats['spatial'] = [feats_[:, i, :, :, :] for i in range(0, t)] | |
# compute optical flow using the low-res inputs | |
assert lqs_downsample.size(3) >= 64 and lqs_downsample.size(4) >= 64, ( | |
'The height and width of low-res inputs must be at least 64, ' | |
f'but got {h} and {w}.') | |
flows_forward, flows_backward = self.compute_flow(lqs_downsample) | |
# feature propgation | |
for iter_ in [1, 2]: | |
for direction in ['backward', 'forward']: | |
module = f'{direction}_{iter_}' | |
feats[module] = [] | |
if direction == 'backward': | |
flows = flows_backward | |
elif flows_forward is not None: | |
flows = flows_forward | |
else: | |
flows = flows_backward.flip(1) | |
feats = self.propagate(feats, flows, module) | |
if self.cpu_cache: | |
del flows | |
torch.cuda.empty_cache() | |
return self.upsample(lqs, feats) | |
class SecondOrderDeformableAlignment(ModulatedDeformConvPack): | |
"""Second-order deformable alignment module. | |
Args: | |
in_channels (int): Same as nn.Conv2d. | |
out_channels (int): Same as nn.Conv2d. | |
kernel_size (int or tuple[int]): Same as nn.Conv2d. | |
stride (int or tuple[int]): Same as nn.Conv2d. | |
padding (int or tuple[int]): Same as nn.Conv2d. | |
dilation (int or tuple[int]): Same as nn.Conv2d. | |
groups (int): Same as nn.Conv2d. | |
bias (bool or str): If specified as `auto`, it will be decided by the | |
norm_cfg. Bias will be set as True if norm_cfg is None, otherwise | |
False. | |
max_residue_magnitude (int): The maximum magnitude of the offset | |
residue (Eq. 6 in paper). Default: 10. | |
""" | |
def __init__(self, *args, **kwargs): | |
self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 10) | |
super(SecondOrderDeformableAlignment, self).__init__(*args, **kwargs) | |
self.conv_offset = nn.Sequential( | |
nn.Conv2d(3 * self.out_channels + 4, self.out_channels, 3, 1, 1), | |
nn.LeakyReLU(negative_slope=0.1, inplace=True), | |
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1), | |
nn.LeakyReLU(negative_slope=0.1, inplace=True), | |
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1), | |
nn.LeakyReLU(negative_slope=0.1, inplace=True), | |
nn.Conv2d(self.out_channels, 27 * self.deformable_groups, 3, 1, 1), | |
) | |
self.init_offset() | |
def init_offset(self): | |
def _constant_init(module, val, bias=0): | |
if hasattr(module, 'weight') and module.weight is not None: | |
nn.init.constant_(module.weight, val) | |
if hasattr(module, 'bias') and module.bias is not None: | |
nn.init.constant_(module.bias, bias) | |
_constant_init(self.conv_offset[-1], val=0, bias=0) | |
def forward(self, x, extra_feat, flow_1, flow_2): | |
extra_feat = torch.cat([extra_feat, flow_1, flow_2], dim=1) | |
out = self.conv_offset(extra_feat) | |
o1, o2, mask = torch.chunk(out, 3, dim=1) | |
# offset | |
offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1)) | |
offset_1, offset_2 = torch.chunk(offset, 2, dim=1) | |
offset_1 = offset_1 + flow_1.flip(1).repeat(1, offset_1.size(1) // 2, 1, 1) | |
offset_2 = offset_2 + flow_2.flip(1).repeat(1, offset_2.size(1) // 2, 1, 1) | |
offset = torch.cat([offset_1, offset_2], dim=1) | |
# mask | |
mask = torch.sigmoid(mask) | |
return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding, | |
self.dilation, mask) | |
# if __name__ == '__main__': | |
# spynet_path = 'experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth' | |
# model = BasicVSRPlusPlus(spynet_path=spynet_path).cuda() | |
# input = torch.rand(1, 2, 3, 64, 64).cuda() | |
# output = model(input) | |
# print('===================') | |
# print(output.shape) | |