Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torch import nn as nn | |
from torch.nn import functional as F | |
from basicsr.utils.registry import ARCH_REGISTRY | |
from .arch_util import ResidualBlockNoBN, flow_warp, make_layer | |
from .edvr_arch import PCDAlignment, TSAFusion | |
from .spynet_arch import SpyNet | |
class BasicVSR(nn.Module): | |
"""A recurrent network for video SR. Now only x4 is supported. | |
Args: | |
num_feat (int): Number of channels. Default: 64. | |
num_block (int): Number of residual blocks for each branch. Default: 15 | |
spynet_path (str): Path to the pretrained weights of SPyNet. Default: None. | |
""" | |
def __init__(self, num_feat=64, num_block=15, spynet_path=None): | |
super().__init__() | |
self.num_feat = num_feat | |
# alignment | |
self.spynet = SpyNet(spynet_path) | |
# propagation | |
self.backward_trunk = ConvResidualBlocks(num_feat + 3, num_feat, num_block) | |
self.forward_trunk = ConvResidualBlocks(num_feat + 3, num_feat, num_block) | |
# reconstruction | |
self.fusion = nn.Conv2d(num_feat * 2, num_feat, 1, 1, 0, bias=True) | |
self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1, bias=True) | |
self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1, bias=True) | |
self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1) | |
self.conv_last = nn.Conv2d(64, 3, 3, 1, 1) | |
self.pixel_shuffle = nn.PixelShuffle(2) | |
# activation functions | |
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) | |
def get_flow(self, x): | |
b, n, c, h, w = x.size() | |
x_1 = x[:, :-1, :, :, :].reshape(-1, c, h, w) | |
x_2 = x[:, 1:, :, :, :].reshape(-1, c, h, w) | |
flows_backward = self.spynet(x_1, x_2).view(b, n - 1, 2, h, w) | |
flows_forward = self.spynet(x_2, x_1).view(b, n - 1, 2, h, w) | |
return flows_forward, flows_backward | |
def forward(self, x): | |
"""Forward function of BasicVSR. | |
Args: | |
x: Input frames with shape (b, n, c, h, w). n is the temporal dimension / number of frames. | |
""" | |
flows_forward, flows_backward = self.get_flow(x) | |
b, n, _, h, w = x.size() | |
# backward branch | |
out_l = [] | |
feat_prop = x.new_zeros(b, self.num_feat, h, w) | |
for i in range(n - 1, -1, -1): | |
x_i = x[:, i, :, :, :] | |
if i < n - 1: | |
flow = flows_backward[:, i, :, :, :] | |
feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1)) | |
feat_prop = torch.cat([x_i, feat_prop], dim=1) | |
feat_prop = self.backward_trunk(feat_prop) | |
out_l.insert(0, feat_prop) | |
# forward branch | |
feat_prop = torch.zeros_like(feat_prop) | |
for i in range(0, n): | |
x_i = x[:, i, :, :, :] | |
if i > 0: | |
flow = flows_forward[:, i - 1, :, :, :] | |
feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1)) | |
feat_prop = torch.cat([x_i, feat_prop], dim=1) | |
feat_prop = self.forward_trunk(feat_prop) | |
# upsample | |
out = torch.cat([out_l[i], feat_prop], dim=1) | |
out = self.lrelu(self.fusion(out)) | |
out = self.lrelu(self.pixel_shuffle(self.upconv1(out))) | |
out = self.lrelu(self.pixel_shuffle(self.upconv2(out))) | |
out = self.lrelu(self.conv_hr(out)) | |
out = self.conv_last(out) | |
base = F.interpolate(x_i, scale_factor=4, mode='bilinear', align_corners=False) | |
out += base | |
out_l[i] = out | |
return torch.stack(out_l, dim=1) | |
class ConvResidualBlocks(nn.Module): | |
"""Conv and residual block used in BasicVSR. | |
Args: | |
num_in_ch (int): Number of input channels. Default: 3. | |
num_out_ch (int): Number of output channels. Default: 64. | |
num_block (int): Number of residual blocks. Default: 15. | |
""" | |
def __init__(self, num_in_ch=3, num_out_ch=64, num_block=15): | |
super().__init__() | |
self.main = nn.Sequential( | |
nn.Conv2d(num_in_ch, num_out_ch, 3, 1, 1, bias=True), nn.LeakyReLU(negative_slope=0.1, inplace=True), | |
make_layer(ResidualBlockNoBN, num_block, num_feat=num_out_ch)) | |
def forward(self, fea): | |
return self.main(fea) | |
class IconVSR(nn.Module): | |
"""IconVSR, proposed also in the BasicVSR paper. | |
Args: | |
num_feat (int): Number of channels. Default: 64. | |
num_block (int): Number of residual blocks for each branch. Default: 15. | |
keyframe_stride (int): Keyframe stride. Default: 5. | |
temporal_padding (int): Temporal padding. Default: 2. | |
spynet_path (str): Path to the pretrained weights of SPyNet. Default: None. | |
edvr_path (str): Path to the pretrained EDVR model. Default: None. | |
""" | |
def __init__(self, | |
num_feat=64, | |
num_block=15, | |
keyframe_stride=5, | |
temporal_padding=2, | |
spynet_path=None, | |
edvr_path=None): | |
super().__init__() | |
self.num_feat = num_feat | |
self.temporal_padding = temporal_padding | |
self.keyframe_stride = keyframe_stride | |
# keyframe_branch | |
self.edvr = EDVRFeatureExtractor(temporal_padding * 2 + 1, num_feat, edvr_path) | |
# alignment | |
self.spynet = SpyNet(spynet_path) | |
# propagation | |
self.backward_fusion = nn.Conv2d(2 * num_feat, num_feat, 3, 1, 1, bias=True) | |
self.backward_trunk = ConvResidualBlocks(num_feat + 3, num_feat, num_block) | |
self.forward_fusion = nn.Conv2d(2 * num_feat, num_feat, 3, 1, 1, bias=True) | |
self.forward_trunk = ConvResidualBlocks(2 * num_feat + 3, num_feat, num_block) | |
# reconstruction | |
self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1, bias=True) | |
self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1, bias=True) | |
self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1) | |
self.conv_last = nn.Conv2d(64, 3, 3, 1, 1) | |
self.pixel_shuffle = nn.PixelShuffle(2) | |
# activation functions | |
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) | |
def pad_spatial(self, x): | |
"""Apply padding spatially. | |
Since the PCD module in EDVR requires that the resolution is a multiple | |
of 4, we apply padding to the input LR images if their resolution is | |
not divisible by 4. | |
Args: | |
x (Tensor): Input LR sequence with shape (n, t, c, h, w). | |
Returns: | |
Tensor: Padded LR sequence with shape (n, t, c, h_pad, w_pad). | |
""" | |
n, t, c, h, w = x.size() | |
pad_h = (4 - h % 4) % 4 | |
pad_w = (4 - w % 4) % 4 | |
# padding | |
x = x.view(-1, c, h, w) | |
x = F.pad(x, [0, pad_w, 0, pad_h], mode='reflect') | |
return x.view(n, t, c, h + pad_h, w + pad_w) | |
def get_flow(self, x): | |
b, n, c, h, w = x.size() | |
x_1 = x[:, :-1, :, :, :].reshape(-1, c, h, w) | |
x_2 = x[:, 1:, :, :, :].reshape(-1, c, h, w) | |
flows_backward = self.spynet(x_1, x_2).view(b, n - 1, 2, h, w) | |
flows_forward = self.spynet(x_2, x_1).view(b, n - 1, 2, h, w) | |
return flows_forward, flows_backward | |
def get_keyframe_feature(self, x, keyframe_idx): | |
if self.temporal_padding == 2: | |
x = [x[:, [4, 3]], x, x[:, [-4, -5]]] | |
elif self.temporal_padding == 3: | |
x = [x[:, [6, 5, 4]], x, x[:, [-5, -6, -7]]] | |
x = torch.cat(x, dim=1) | |
num_frames = 2 * self.temporal_padding + 1 | |
feats_keyframe = {} | |
for i in keyframe_idx: | |
feats_keyframe[i] = self.edvr(x[:, i:i + num_frames].contiguous()) | |
return feats_keyframe | |
def forward(self, x): | |
b, n, _, h_input, w_input = x.size() | |
x = self.pad_spatial(x) | |
h, w = x.shape[3:] | |
keyframe_idx = list(range(0, n, self.keyframe_stride)) | |
if keyframe_idx[-1] != n - 1: | |
keyframe_idx.append(n - 1) # last frame is a keyframe | |
# compute flow and keyframe features | |
flows_forward, flows_backward = self.get_flow(x) | |
feats_keyframe = self.get_keyframe_feature(x, keyframe_idx) | |
# backward branch | |
out_l = [] | |
feat_prop = x.new_zeros(b, self.num_feat, h, w) | |
for i in range(n - 1, -1, -1): | |
x_i = x[:, i, :, :, :] | |
if i < n - 1: | |
flow = flows_backward[:, i, :, :, :] | |
feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1)) | |
if i in keyframe_idx: | |
feat_prop = torch.cat([feat_prop, feats_keyframe[i]], dim=1) | |
feat_prop = self.backward_fusion(feat_prop) | |
feat_prop = torch.cat([x_i, feat_prop], dim=1) | |
feat_prop = self.backward_trunk(feat_prop) | |
out_l.insert(0, feat_prop) | |
# forward branch | |
feat_prop = torch.zeros_like(feat_prop) | |
for i in range(0, n): | |
x_i = x[:, i, :, :, :] | |
if i > 0: | |
flow = flows_forward[:, i - 1, :, :, :] | |
feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1)) | |
if i in keyframe_idx: | |
feat_prop = torch.cat([feat_prop, feats_keyframe[i]], dim=1) | |
feat_prop = self.forward_fusion(feat_prop) | |
feat_prop = torch.cat([x_i, out_l[i], feat_prop], dim=1) | |
feat_prop = self.forward_trunk(feat_prop) | |
# upsample | |
out = self.lrelu(self.pixel_shuffle(self.upconv1(feat_prop))) | |
out = self.lrelu(self.pixel_shuffle(self.upconv2(out))) | |
out = self.lrelu(self.conv_hr(out)) | |
out = self.conv_last(out) | |
base = F.interpolate(x_i, scale_factor=4, mode='bilinear', align_corners=False) | |
out += base | |
out_l[i] = out | |
return torch.stack(out_l, dim=1)[..., :4 * h_input, :4 * w_input] | |
class EDVRFeatureExtractor(nn.Module): | |
"""EDVR feature extractor used in IconVSR. | |
Args: | |
num_input_frame (int): Number of input frames. | |
num_feat (int): Number of feature channels | |
load_path (str): Path to the pretrained weights of EDVR. Default: None. | |
""" | |
def __init__(self, num_input_frame, num_feat, load_path): | |
super(EDVRFeatureExtractor, self).__init__() | |
self.center_frame_idx = num_input_frame // 2 | |
# extract pyramid features | |
self.conv_first = nn.Conv2d(3, num_feat, 3, 1, 1) | |
self.feature_extraction = make_layer(ResidualBlockNoBN, 5, num_feat=num_feat) | |
self.conv_l2_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1) | |
self.conv_l2_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) | |
self.conv_l3_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1) | |
self.conv_l3_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) | |
# pcd and tsa module | |
self.pcd_align = PCDAlignment(num_feat=num_feat, deformable_groups=8) | |
self.fusion = TSAFusion(num_feat=num_feat, num_frame=num_input_frame, center_frame_idx=self.center_frame_idx) | |
# activation function | |
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) | |
if load_path: | |
self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params']) | |
def forward(self, x): | |
b, n, c, h, w = x.size() | |
# extract features for each frame | |
# L1 | |
feat_l1 = self.lrelu(self.conv_first(x.view(-1, c, h, w))) | |
feat_l1 = self.feature_extraction(feat_l1) | |
# L2 | |
feat_l2 = self.lrelu(self.conv_l2_1(feat_l1)) | |
feat_l2 = self.lrelu(self.conv_l2_2(feat_l2)) | |
# L3 | |
feat_l3 = self.lrelu(self.conv_l3_1(feat_l2)) | |
feat_l3 = self.lrelu(self.conv_l3_2(feat_l3)) | |
feat_l1 = feat_l1.view(b, n, -1, h, w) | |
feat_l2 = feat_l2.view(b, n, -1, h // 2, w // 2) | |
feat_l3 = feat_l3.view(b, n, -1, h // 4, w // 4) | |
# PCD alignment | |
ref_feat_l = [ # reference feature list | |
feat_l1[:, self.center_frame_idx, :, :, :].clone(), feat_l2[:, self.center_frame_idx, :, :, :].clone(), | |
feat_l3[:, self.center_frame_idx, :, :, :].clone() | |
] | |
aligned_feat = [] | |
for i in range(n): | |
nbr_feat_l = [ # neighboring feature list | |
feat_l1[:, i, :, :, :].clone(), feat_l2[:, i, :, :, :].clone(), feat_l3[:, i, :, :, :].clone() | |
] | |
aligned_feat.append(self.pcd_align(nbr_feat_l, ref_feat_l)) | |
aligned_feat = torch.stack(aligned_feat, dim=1) # (b, t, c, h, w) | |
# TSA fusion | |
return self.fusion(aligned_feat) | |