Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Dominic Rampas MIT License | |
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...models.modeling_utils import ModelMixin | |
from .modeling_wuerstchen_common import AttnBlock, GlobalResponseNorm, TimestepBlock, WuerstchenLayerNorm | |
class WuerstchenDiffNeXt(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
c_in=4, | |
c_out=4, | |
c_r=64, | |
patch_size=2, | |
c_cond=1024, | |
c_hidden=[320, 640, 1280, 1280], | |
nhead=[-1, 10, 20, 20], | |
blocks=[4, 4, 14, 4], | |
level_config=["CT", "CTA", "CTA", "CTA"], | |
inject_effnet=[False, True, True, True], | |
effnet_embd=16, | |
clip_embd=1024, | |
kernel_size=3, | |
dropout=0.1, | |
): | |
super().__init__() | |
self.c_r = c_r | |
self.c_cond = c_cond | |
if not isinstance(dropout, list): | |
dropout = [dropout] * len(c_hidden) | |
# CONDITIONING | |
self.clip_mapper = nn.Linear(clip_embd, c_cond) | |
self.effnet_mappers = nn.ModuleList( | |
[ | |
nn.Conv2d(effnet_embd, c_cond, kernel_size=1) if inject else None | |
for inject in inject_effnet + list(reversed(inject_effnet)) | |
] | |
) | |
self.seq_norm = nn.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6) | |
self.embedding = nn.Sequential( | |
nn.PixelUnshuffle(patch_size), | |
nn.Conv2d(c_in * (patch_size**2), c_hidden[0], kernel_size=1), | |
WuerstchenLayerNorm(c_hidden[0], elementwise_affine=False, eps=1e-6), | |
) | |
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0): | |
if block_type == "C": | |
return ResBlockStageB(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout) | |
elif block_type == "A": | |
return AttnBlock(c_hidden, c_cond, nhead, self_attn=True, dropout=dropout) | |
elif block_type == "T": | |
return TimestepBlock(c_hidden, c_r) | |
else: | |
raise ValueError(f"Block type {block_type} not supported") | |
# BLOCKS | |
# -- down blocks | |
self.down_blocks = nn.ModuleList() | |
for i in range(len(c_hidden)): | |
down_block = nn.ModuleList() | |
if i > 0: | |
down_block.append( | |
nn.Sequential( | |
WuerstchenLayerNorm(c_hidden[i - 1], elementwise_affine=False, eps=1e-6), | |
nn.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2), | |
) | |
) | |
for _ in range(blocks[i]): | |
for block_type in level_config[i]: | |
c_skip = c_cond if inject_effnet[i] else 0 | |
down_block.append(get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i])) | |
self.down_blocks.append(down_block) | |
# -- up blocks | |
self.up_blocks = nn.ModuleList() | |
for i in reversed(range(len(c_hidden))): | |
up_block = nn.ModuleList() | |
for j in range(blocks[i]): | |
for k, block_type in enumerate(level_config[i]): | |
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0 | |
c_skip += c_cond if inject_effnet[i] else 0 | |
up_block.append(get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i])) | |
if i > 0: | |
up_block.append( | |
nn.Sequential( | |
WuerstchenLayerNorm(c_hidden[i], elementwise_affine=False, eps=1e-6), | |
nn.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2), | |
) | |
) | |
self.up_blocks.append(up_block) | |
# OUTPUT | |
self.clf = nn.Sequential( | |
WuerstchenLayerNorm(c_hidden[0], elementwise_affine=False, eps=1e-6), | |
nn.Conv2d(c_hidden[0], 2 * c_out * (patch_size**2), kernel_size=1), | |
nn.PixelShuffle(patch_size), | |
) | |
# --- WEIGHT INIT --- | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
# General init | |
if isinstance(m, (nn.Conv2d, nn.Linear)): | |
nn.init.xavier_uniform_(m.weight) | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
for mapper in self.effnet_mappers: | |
if mapper is not None: | |
nn.init.normal_(mapper.weight, std=0.02) # conditionings | |
nn.init.normal_(self.clip_mapper.weight, std=0.02) # conditionings | |
nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs | |
nn.init.constant_(self.clf[1].weight, 0) # outputs | |
# blocks | |
for level_block in self.down_blocks + self.up_blocks: | |
for block in level_block: | |
if isinstance(block, ResBlockStageB): | |
block.channelwise[-1].weight.data *= np.sqrt(1 / sum(self.config.blocks)) | |
elif isinstance(block, TimestepBlock): | |
nn.init.constant_(block.mapper.weight, 0) | |
def gen_r_embedding(self, r, max_positions=10000): | |
r = r * max_positions | |
half_dim = self.c_r // 2 | |
emb = math.log(max_positions) / (half_dim - 1) | |
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp() | |
emb = r[:, None] * emb[None, :] | |
emb = torch.cat([emb.sin(), emb.cos()], dim=1) | |
if self.c_r % 2 == 1: # zero pad | |
emb = nn.functional.pad(emb, (0, 1), mode="constant") | |
return emb.to(dtype=r.dtype) | |
def gen_c_embeddings(self, clip): | |
clip = self.clip_mapper(clip) | |
clip = self.seq_norm(clip) | |
return clip | |
def _down_encode(self, x, r_embed, effnet, clip=None): | |
level_outputs = [] | |
for i, down_block in enumerate(self.down_blocks): | |
effnet_c = None | |
for block in down_block: | |
if isinstance(block, ResBlockStageB): | |
if effnet_c is None and self.effnet_mappers[i] is not None: | |
dtype = effnet.dtype | |
effnet_c = self.effnet_mappers[i]( | |
nn.functional.interpolate( | |
effnet.float(), size=x.shape[-2:], mode="bicubic", antialias=True, align_corners=True | |
).to(dtype) | |
) | |
skip = effnet_c if self.effnet_mappers[i] is not None else None | |
x = block(x, skip) | |
elif isinstance(block, AttnBlock): | |
x = block(x, clip) | |
elif isinstance(block, TimestepBlock): | |
x = block(x, r_embed) | |
else: | |
x = block(x) | |
level_outputs.insert(0, x) | |
return level_outputs | |
def _up_decode(self, level_outputs, r_embed, effnet, clip=None): | |
x = level_outputs[0] | |
for i, up_block in enumerate(self.up_blocks): | |
effnet_c = None | |
for j, block in enumerate(up_block): | |
if isinstance(block, ResBlockStageB): | |
if effnet_c is None and self.effnet_mappers[len(self.down_blocks) + i] is not None: | |
dtype = effnet.dtype | |
effnet_c = self.effnet_mappers[len(self.down_blocks) + i]( | |
nn.functional.interpolate( | |
effnet.float(), size=x.shape[-2:], mode="bicubic", antialias=True, align_corners=True | |
).to(dtype) | |
) | |
skip = level_outputs[i] if j == 0 and i > 0 else None | |
if effnet_c is not None: | |
if skip is not None: | |
skip = torch.cat([skip, effnet_c], dim=1) | |
else: | |
skip = effnet_c | |
x = block(x, skip) | |
elif isinstance(block, AttnBlock): | |
x = block(x, clip) | |
elif isinstance(block, TimestepBlock): | |
x = block(x, r_embed) | |
else: | |
x = block(x) | |
return x | |
def forward(self, x, r, effnet, clip=None, x_cat=None, eps=1e-3, return_noise=True): | |
if x_cat is not None: | |
x = torch.cat([x, x_cat], dim=1) | |
# Process the conditioning embeddings | |
r_embed = self.gen_r_embedding(r) | |
if clip is not None: | |
clip = self.gen_c_embeddings(clip) | |
# Model Blocks | |
x_in = x | |
x = self.embedding(x) | |
level_outputs = self._down_encode(x, r_embed, effnet, clip) | |
x = self._up_decode(level_outputs, r_embed, effnet, clip) | |
a, b = self.clf(x).chunk(2, dim=1) | |
b = b.sigmoid() * (1 - eps * 2) + eps | |
if return_noise: | |
return (x_in - a) / b | |
else: | |
return a, b | |
class ResBlockStageB(nn.Module): | |
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0): | |
super().__init__() | |
self.depthwise = nn.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c) | |
self.norm = WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6) | |
self.channelwise = nn.Sequential( | |
nn.Linear(c + c_skip, c * 4), | |
nn.GELU(), | |
GlobalResponseNorm(c * 4), | |
nn.Dropout(dropout), | |
nn.Linear(c * 4, c), | |
) | |
def forward(self, x, x_skip=None): | |
x_res = x | |
x = self.norm(self.depthwise(x)) | |
if x_skip is not None: | |
x = torch.cat([x, x_skip], dim=1) | |
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
return x + x_res | |