Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python3 | |
import argparse | |
import fnmatch | |
from safetensors.torch import load_file | |
from diffusers import Kandinsky3UNet | |
MAPPING = { | |
"to_time_embed.1": "time_embedding.linear_1", | |
"to_time_embed.3": "time_embedding.linear_2", | |
"in_layer": "conv_in", | |
"out_layer.0": "conv_norm_out", | |
"out_layer.2": "conv_out", | |
"down_samples": "down_blocks", | |
"up_samples": "up_blocks", | |
"projection_lin": "encoder_hid_proj.projection_linear", | |
"projection_ln": "encoder_hid_proj.projection_norm", | |
"feature_pooling": "add_time_condition", | |
"to_query": "to_q", | |
"to_key": "to_k", | |
"to_value": "to_v", | |
"output_layer": "to_out.0", | |
"self_attention_block": "attentions.0", | |
} | |
DYNAMIC_MAP = { | |
"resnet_attn_blocks.*.0": "resnets_in.*", | |
"resnet_attn_blocks.*.1": ("attentions.*", 1), | |
"resnet_attn_blocks.*.2": "resnets_out.*", | |
} | |
# MAPPING = {} | |
def convert_state_dict(unet_state_dict): | |
""" | |
Args: | |
Convert the state dict of a U-Net model to match the key format expected by Kandinsky3UNet model. | |
unet_model (torch.nn.Module): The original U-Net model. unet_kandi3_model (torch.nn.Module): The Kandinsky3UNet | |
model to match keys with. | |
Returns: | |
OrderedDict: The converted state dictionary. | |
""" | |
# Example of renaming logic (this will vary based on your model's architecture) | |
converted_state_dict = {} | |
for key in unet_state_dict: | |
new_key = key | |
for pattern, new_pattern in MAPPING.items(): | |
new_key = new_key.replace(pattern, new_pattern) | |
for dyn_pattern, dyn_new_pattern in DYNAMIC_MAP.items(): | |
has_matched = False | |
if fnmatch.fnmatch(new_key, f"*.{dyn_pattern}.*") and not has_matched: | |
star = int(new_key.split(dyn_pattern.split(".")[0])[-1].split(".")[1]) | |
if isinstance(dyn_new_pattern, tuple): | |
new_star = star + dyn_new_pattern[-1] | |
dyn_new_pattern = dyn_new_pattern[0] | |
else: | |
new_star = star | |
pattern = dyn_pattern.replace("*", str(star)) | |
new_pattern = dyn_new_pattern.replace("*", str(new_star)) | |
new_key = new_key.replace(pattern, new_pattern) | |
has_matched = True | |
converted_state_dict[new_key] = unet_state_dict[key] | |
return converted_state_dict | |
def main(model_path, output_path): | |
# Load your original U-Net model | |
unet_state_dict = load_file(model_path) | |
# Initialize your Kandinsky3UNet model | |
config = {} | |
# Convert the state dict | |
converted_state_dict = convert_state_dict(unet_state_dict) | |
unet = Kandinsky3UNet(config) | |
unet.load_state_dict(converted_state_dict) | |
unet.save_pretrained(output_path) | |
print(f"Converted model saved to {output_path}") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Convert U-Net PyTorch model to Kandinsky3UNet format") | |
parser.add_argument("--model_path", type=str, required=True, help="Path to the original U-Net PyTorch model") | |
parser.add_argument("--output_path", type=str, required=True, help="Path to save the converted model") | |
args = parser.parse_args() | |
main(args.model_path, args.output_path) | |