Hunyuan3D-1.0 / diffusers /pipelines /wuerstchen /modeling_wuerstchen_prior.py
gokaygokay's picture
Upload 556 files
0324143 verified
raw
history blame
8.69 kB
# Copyright (c) 2023 Dominic Rampas MIT License
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Dict, Union
import torch
import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
from ...models.attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
CROSS_ATTENTION_PROCESSORS,
AttentionProcessor,
AttnAddedKVProcessor,
AttnProcessor,
)
from ...models.modeling_utils import ModelMixin
from ...utils import is_torch_version
from .modeling_wuerstchen_common import AttnBlock, ResBlock, TimestepBlock, WuerstchenLayerNorm
class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
unet_name = "prior"
_supports_gradient_checkpointing = True
@register_to_config
def __init__(self, c_in=16, c=1280, c_cond=1024, c_r=64, depth=16, nhead=16, dropout=0.1):
super().__init__()
self.c_r = c_r
self.projection = nn.Conv2d(c_in, c, kernel_size=1)
self.cond_mapper = nn.Sequential(
nn.Linear(c_cond, c),
nn.LeakyReLU(0.2),
nn.Linear(c, c),
)
self.blocks = nn.ModuleList()
for _ in range(depth):
self.blocks.append(ResBlock(c, dropout=dropout))
self.blocks.append(TimestepBlock(c, c_r))
self.blocks.append(AttnBlock(c, c, nhead, self_attn=True, dropout=dropout))
self.out = nn.Sequential(
WuerstchenLayerNorm(c, elementwise_affine=False, eps=1e-6),
nn.Conv2d(c, c_in * 2, kernel_size=1),
)
self.gradient_checkpointing = False
self.set_default_attn_processor()
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnAddedKVProcessor()
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor)
def _set_gradient_checkpointing(self, module, value=False):
self.gradient_checkpointing = value
def gen_r_embedding(self, r, max_positions=10000):
r = r * max_positions
half_dim = self.c_r // 2
emb = math.log(max_positions) / (half_dim - 1)
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
emb = r[:, None] * emb[None, :]
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
if self.c_r % 2 == 1: # zero pad
emb = nn.functional.pad(emb, (0, 1), mode="constant")
return emb.to(dtype=r.dtype)
def forward(self, x, r, c):
x_in = x
x = self.projection(x)
c_embed = self.cond_mapper(c)
r_embed = self.gen_r_embedding(r)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
for block in self.blocks:
if isinstance(block, AttnBlock):
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block), x, c_embed, use_reentrant=False
)
elif isinstance(block, TimestepBlock):
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block), x, r_embed, use_reentrant=False
)
else:
x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, use_reentrant=False)
else:
for block in self.blocks:
if isinstance(block, AttnBlock):
x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, c_embed)
elif isinstance(block, TimestepBlock):
x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, r_embed)
else:
x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x)
else:
for block in self.blocks:
if isinstance(block, AttnBlock):
x = block(x, c_embed)
elif isinstance(block, TimestepBlock):
x = block(x, r_embed)
else:
x = block(x)
a, b = self.out(x).chunk(2, dim=1)
return (x_in - a) / ((1 - b).abs() + 1e-5)