gokaygokay's picture
Upload 556 files
0324143 verified
raw
history blame
3.3 kB
import numpy as np
import torch
import torch.nn as nn
from scipy import linalg
from tqdm import tqdm
from basicsr.archs.inception import InceptionV3
def load_patched_inception_v3(device='cuda', resize_input=True, normalize_input=False):
# we may not resize the input, but in [rosinality/stylegan2-pytorch] it
# does resize the input.
inception = InceptionV3([3], resize_input=resize_input, normalize_input=normalize_input)
inception = nn.DataParallel(inception).eval().to(device)
return inception
@torch.no_grad()
def extract_inception_features(data_generator, inception, len_generator=None, device='cuda'):
"""Extract inception features.
Args:
data_generator (generator): A data generator.
inception (nn.Module): Inception model.
len_generator (int): Length of the data_generator to show the
progressbar. Default: None.
device (str): Device. Default: cuda.
Returns:
Tensor: Extracted features.
"""
if len_generator is not None:
pbar = tqdm(total=len_generator, unit='batch', desc='Extract')
else:
pbar = None
features = []
for data in data_generator:
if pbar:
pbar.update(1)
data = data.to(device)
feature = inception(data)[0].view(data.shape[0], -1)
features.append(feature.to('cpu'))
if pbar:
pbar.close()
features = torch.cat(features, 0)
return features
def calculate_fid(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is:
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Args:
mu1 (np.array): The sample mean over activations.
sigma1 (np.array): The covariance matrix over activations for generated samples.
mu2 (np.array): The sample mean over activations, precalculated on an representative data set.
sigma2 (np.array): The covariance matrix over activations, precalculated on an representative data set.
Returns:
float: The Frechet Distance.
"""
assert mu1.shape == mu2.shape, 'Two mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, ('Two covariances have different dimensions')
cov_sqrt, _ = linalg.sqrtm(sigma1 @ sigma2, disp=False)
# Product might be almost singular
if not np.isfinite(cov_sqrt).all():
print('Product of cov matrices is singular. Adding {eps} to diagonal of cov estimates')
offset = np.eye(sigma1.shape[0]) * eps
cov_sqrt = linalg.sqrtm((sigma1 + offset) @ (sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(cov_sqrt):
if not np.allclose(np.diagonal(cov_sqrt).imag, 0, atol=1e-3):
m = np.max(np.abs(cov_sqrt.imag))
raise ValueError(f'Imaginary component {m}')
cov_sqrt = cov_sqrt.real
mean_diff = mu1 - mu2
mean_norm = mean_diff @ mean_diff
trace = np.trace(sigma1) + np.trace(sigma2) - 2 * np.trace(cov_sqrt)
fid = mean_norm + trace
return fid