Spaces:
Running
on
Zero
Running
on
Zero
from torch.utils import data as data | |
from torchvision.transforms.functional import normalize | |
from basicsr.data.data_util import paired_paths_from_folder, paired_paths_from_lmdb, paired_paths_from_meta_info_file | |
from basicsr.data.transforms import augment, paired_random_crop | |
from basicsr.utils import FileClient, bgr2ycbcr, imfrombytes, img2tensor | |
from basicsr.utils.registry import DATASET_REGISTRY | |
class PairedImageDataset(data.Dataset): | |
"""Paired image dataset for image restoration. | |
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and GT image pairs. | |
There are three modes: | |
1. **lmdb**: Use lmdb files. If opt['io_backend'] == lmdb. | |
2. **meta_info_file**: Use meta information file to generate paths. \ | |
If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None. | |
3. **folder**: Scan folders to generate paths. The rest. | |
Args: | |
opt (dict): Config for train datasets. It contains the following keys: | |
dataroot_gt (str): Data root path for gt. | |
dataroot_lq (str): Data root path for lq. | |
meta_info_file (str): Path for meta information file. | |
io_backend (dict): IO backend type and other kwarg. | |
filename_tmpl (str): Template for each filename. Note that the template excludes the file extension. | |
Default: '{}'. | |
gt_size (int): Cropped patched size for gt patches. | |
use_hflip (bool): Use horizontal flips. | |
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation). | |
scale (bool): Scale, which will be added automatically. | |
phase (str): 'train' or 'val'. | |
""" | |
def __init__(self, opt): | |
super(PairedImageDataset, self).__init__() | |
self.opt = opt | |
# file client (io backend) | |
self.file_client = None | |
self.io_backend_opt = opt['io_backend'] | |
self.mean = opt['mean'] if 'mean' in opt else None | |
self.std = opt['std'] if 'std' in opt else None | |
self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq'] | |
if 'filename_tmpl' in opt: | |
self.filename_tmpl = opt['filename_tmpl'] | |
else: | |
self.filename_tmpl = '{}' | |
if self.io_backend_opt['type'] == 'lmdb': | |
self.io_backend_opt['db_paths'] = [self.lq_folder, self.gt_folder] | |
self.io_backend_opt['client_keys'] = ['lq', 'gt'] | |
self.paths = paired_paths_from_lmdb([self.lq_folder, self.gt_folder], ['lq', 'gt']) | |
elif 'meta_info_file' in self.opt and self.opt['meta_info_file'] is not None: | |
self.paths = paired_paths_from_meta_info_file([self.lq_folder, self.gt_folder], ['lq', 'gt'], | |
self.opt['meta_info_file'], self.filename_tmpl) | |
else: | |
self.paths = paired_paths_from_folder([self.lq_folder, self.gt_folder], ['lq', 'gt'], self.filename_tmpl) | |
def __getitem__(self, index): | |
if self.file_client is None: | |
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) | |
scale = self.opt['scale'] | |
# Load gt and lq images. Dimension order: HWC; channel order: BGR; | |
# image range: [0, 1], float32. | |
gt_path = self.paths[index]['gt_path'] | |
img_bytes = self.file_client.get(gt_path, 'gt') | |
img_gt = imfrombytes(img_bytes, float32=True) | |
lq_path = self.paths[index]['lq_path'] | |
img_bytes = self.file_client.get(lq_path, 'lq') | |
img_lq = imfrombytes(img_bytes, float32=True) | |
# augmentation for training | |
if self.opt['phase'] == 'train': | |
gt_size = self.opt['gt_size'] | |
# random crop | |
img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, gt_path) | |
# flip, rotation | |
img_gt, img_lq = augment([img_gt, img_lq], self.opt['use_hflip'], self.opt['use_rot']) | |
# color space transform | |
if 'color' in self.opt and self.opt['color'] == 'y': | |
img_gt = bgr2ycbcr(img_gt, y_only=True)[..., None] | |
img_lq = bgr2ycbcr(img_lq, y_only=True)[..., None] | |
# crop the unmatched GT images during validation or testing, especially for SR benchmark datasets | |
# TODO: It is better to update the datasets, rather than force to crop | |
if self.opt['phase'] != 'train': | |
img_gt = img_gt[0:img_lq.shape[0] * scale, 0:img_lq.shape[1] * scale, :] | |
# BGR to RGB, HWC to CHW, numpy to tensor | |
img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True) | |
# normalize | |
if self.mean is not None or self.std is not None: | |
normalize(img_lq, self.mean, self.std, inplace=True) | |
normalize(img_gt, self.mean, self.std, inplace=True) | |
return {'lq': img_lq, 'gt': img_gt, 'lq_path': lq_path, 'gt_path': gt_path} | |
def __len__(self): | |
return len(self.paths) | |