Hunyuan3D-1.0 / basicsr /data /degradations.py
gokaygokay's picture
Upload 556 files
0324143 verified
raw
history blame
29 kB
import cv2
import math
import numpy as np
import random
import torch
from scipy import special
from scipy.stats import multivariate_normal
from torchvision.transforms._functional_tensor import rgb_to_grayscale
# -------------------------------------------------------------------- #
# --------------------------- blur kernels --------------------------- #
# -------------------------------------------------------------------- #
# --------------------------- util functions --------------------------- #
def sigma_matrix2(sig_x, sig_y, theta):
"""Calculate the rotated sigma matrix (two dimensional matrix).
Args:
sig_x (float):
sig_y (float):
theta (float): Radian measurement.
Returns:
ndarray: Rotated sigma matrix.
"""
d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]])
u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T))
def mesh_grid(kernel_size):
"""Generate the mesh grid, centering at zero.
Args:
kernel_size (int):
Returns:
xy (ndarray): with the shape (kernel_size, kernel_size, 2)
xx (ndarray): with the shape (kernel_size, kernel_size)
yy (ndarray): with the shape (kernel_size, kernel_size)
"""
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.)
xx, yy = np.meshgrid(ax, ax)
xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size,
1))).reshape(kernel_size, kernel_size, 2)
return xy, xx, yy
def pdf2(sigma_matrix, grid):
"""Calculate PDF of the bivariate Gaussian distribution.
Args:
sigma_matrix (ndarray): with the shape (2, 2)
grid (ndarray): generated by :func:`mesh_grid`,
with the shape (K, K, 2), K is the kernel size.
Returns:
kernel (ndarrray): un-normalized kernel.
"""
inverse_sigma = np.linalg.inv(sigma_matrix)
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2))
return kernel
def cdf2(d_matrix, grid):
"""Calculate the CDF of the standard bivariate Gaussian distribution.
Used in skewed Gaussian distribution.
Args:
d_matrix (ndarrasy): skew matrix.
grid (ndarray): generated by :func:`mesh_grid`,
with the shape (K, K, 2), K is the kernel size.
Returns:
cdf (ndarray): skewed cdf.
"""
rv = multivariate_normal([0, 0], [[1, 0], [0, 1]])
grid = np.dot(grid, d_matrix)
cdf = rv.cdf(grid)
return cdf
def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True):
"""Generate a bivariate isotropic or anisotropic Gaussian kernel.
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
Args:
kernel_size (int):
sig_x (float):
sig_y (float):
theta (float): Radian measurement.
grid (ndarray, optional): generated by :func:`mesh_grid`,
with the shape (K, K, 2), K is the kernel size. Default: None
isotropic (bool):
Returns:
kernel (ndarray): normalized kernel.
"""
if grid is None:
grid, _, _ = mesh_grid(kernel_size)
if isotropic:
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
else:
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
kernel = pdf2(sigma_matrix, grid)
kernel = kernel / np.sum(kernel)
return kernel
def bivariate_generalized_Gaussian(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True):
"""Generate a bivariate generalized Gaussian kernel.
``Paper: Parameter Estimation For Multivariate Generalized Gaussian Distributions``
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
Args:
kernel_size (int):
sig_x (float):
sig_y (float):
theta (float): Radian measurement.
beta (float): shape parameter, beta = 1 is the normal distribution.
grid (ndarray, optional): generated by :func:`mesh_grid`,
with the shape (K, K, 2), K is the kernel size. Default: None
Returns:
kernel (ndarray): normalized kernel.
"""
if grid is None:
grid, _, _ = mesh_grid(kernel_size)
if isotropic:
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
else:
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
inverse_sigma = np.linalg.inv(sigma_matrix)
kernel = np.exp(-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta))
kernel = kernel / np.sum(kernel)
return kernel
def bivariate_plateau(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True):
"""Generate a plateau-like anisotropic kernel.
1 / (1+x^(beta))
Reference: https://stats.stackexchange.com/questions/203629/is-there-a-plateau-shaped-distribution
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
Args:
kernel_size (int):
sig_x (float):
sig_y (float):
theta (float): Radian measurement.
beta (float): shape parameter, beta = 1 is the normal distribution.
grid (ndarray, optional): generated by :func:`mesh_grid`,
with the shape (K, K, 2), K is the kernel size. Default: None
Returns:
kernel (ndarray): normalized kernel.
"""
if grid is None:
grid, _, _ = mesh_grid(kernel_size)
if isotropic:
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
else:
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
inverse_sigma = np.linalg.inv(sigma_matrix)
kernel = np.reciprocal(np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta) + 1)
kernel = kernel / np.sum(kernel)
return kernel
def random_bivariate_Gaussian(kernel_size,
sigma_x_range,
sigma_y_range,
rotation_range,
noise_range=None,
isotropic=True):
"""Randomly generate bivariate isotropic or anisotropic Gaussian kernels.
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
Args:
kernel_size (int):
sigma_x_range (tuple): [0.6, 5]
sigma_y_range (tuple): [0.6, 5]
rotation range (tuple): [-math.pi, math.pi]
noise_range(tuple, optional): multiplicative kernel noise,
[0.75, 1.25]. Default: None
Returns:
kernel (ndarray):
"""
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
if isotropic is False:
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
else:
sigma_y = sigma_x
rotation = 0
kernel = bivariate_Gaussian(kernel_size, sigma_x, sigma_y, rotation, isotropic=isotropic)
# add multiplicative noise
if noise_range is not None:
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
kernel = kernel * noise
kernel = kernel / np.sum(kernel)
return kernel
def random_bivariate_generalized_Gaussian(kernel_size,
sigma_x_range,
sigma_y_range,
rotation_range,
beta_range,
noise_range=None,
isotropic=True):
"""Randomly generate bivariate generalized Gaussian kernels.
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
Args:
kernel_size (int):
sigma_x_range (tuple): [0.6, 5]
sigma_y_range (tuple): [0.6, 5]
rotation range (tuple): [-math.pi, math.pi]
beta_range (tuple): [0.5, 8]
noise_range(tuple, optional): multiplicative kernel noise,
[0.75, 1.25]. Default: None
Returns:
kernel (ndarray):
"""
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
if isotropic is False:
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
else:
sigma_y = sigma_x
rotation = 0
# assume beta_range[0] < 1 < beta_range[1]
if np.random.uniform() < 0.5:
beta = np.random.uniform(beta_range[0], 1)
else:
beta = np.random.uniform(1, beta_range[1])
kernel = bivariate_generalized_Gaussian(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic)
# add multiplicative noise
if noise_range is not None:
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
kernel = kernel * noise
kernel = kernel / np.sum(kernel)
return kernel
def random_bivariate_plateau(kernel_size,
sigma_x_range,
sigma_y_range,
rotation_range,
beta_range,
noise_range=None,
isotropic=True):
"""Randomly generate bivariate plateau kernels.
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
Args:
kernel_size (int):
sigma_x_range (tuple): [0.6, 5]
sigma_y_range (tuple): [0.6, 5]
rotation range (tuple): [-math.pi/2, math.pi/2]
beta_range (tuple): [1, 4]
noise_range(tuple, optional): multiplicative kernel noise,
[0.75, 1.25]. Default: None
Returns:
kernel (ndarray):
"""
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
if isotropic is False:
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
else:
sigma_y = sigma_x
rotation = 0
# TODO: this may be not proper
if np.random.uniform() < 0.5:
beta = np.random.uniform(beta_range[0], 1)
else:
beta = np.random.uniform(1, beta_range[1])
kernel = bivariate_plateau(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic)
# add multiplicative noise
if noise_range is not None:
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
kernel = kernel * noise
kernel = kernel / np.sum(kernel)
return kernel
def random_mixed_kernels(kernel_list,
kernel_prob,
kernel_size=21,
sigma_x_range=(0.6, 5),
sigma_y_range=(0.6, 5),
rotation_range=(-math.pi, math.pi),
betag_range=(0.5, 8),
betap_range=(0.5, 8),
noise_range=None):
"""Randomly generate mixed kernels.
Args:
kernel_list (tuple): a list name of kernel types,
support ['iso', 'aniso', 'skew', 'generalized', 'plateau_iso',
'plateau_aniso']
kernel_prob (tuple): corresponding kernel probability for each
kernel type
kernel_size (int):
sigma_x_range (tuple): [0.6, 5]
sigma_y_range (tuple): [0.6, 5]
rotation range (tuple): [-math.pi, math.pi]
beta_range (tuple): [0.5, 8]
noise_range(tuple, optional): multiplicative kernel noise,
[0.75, 1.25]. Default: None
Returns:
kernel (ndarray):
"""
kernel_type = random.choices(kernel_list, kernel_prob)[0]
if kernel_type == 'iso':
kernel = random_bivariate_Gaussian(
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=True)
elif kernel_type == 'aniso':
kernel = random_bivariate_Gaussian(
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=False)
elif kernel_type == 'generalized_iso':
kernel = random_bivariate_generalized_Gaussian(
kernel_size,
sigma_x_range,
sigma_y_range,
rotation_range,
betag_range,
noise_range=noise_range,
isotropic=True)
elif kernel_type == 'generalized_aniso':
kernel = random_bivariate_generalized_Gaussian(
kernel_size,
sigma_x_range,
sigma_y_range,
rotation_range,
betag_range,
noise_range=noise_range,
isotropic=False)
elif kernel_type == 'plateau_iso':
kernel = random_bivariate_plateau(
kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=True)
elif kernel_type == 'plateau_aniso':
kernel = random_bivariate_plateau(
kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=False)
return kernel
np.seterr(divide='ignore', invalid='ignore')
def circular_lowpass_kernel(cutoff, kernel_size, pad_to=0):
"""2D sinc filter
Reference: https://dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter
Args:
cutoff (float): cutoff frequency in radians (pi is max)
kernel_size (int): horizontal and vertical size, must be odd.
pad_to (int): pad kernel size to desired size, must be odd or zero.
"""
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
kernel = np.fromfunction(
lambda x, y: cutoff * special.j1(cutoff * np.sqrt(
(x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)) / (2 * np.pi * np.sqrt(
(x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)), [kernel_size, kernel_size])
kernel[(kernel_size - 1) // 2, (kernel_size - 1) // 2] = cutoff**2 / (4 * np.pi)
kernel = kernel / np.sum(kernel)
if pad_to > kernel_size:
pad_size = (pad_to - kernel_size) // 2
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
return kernel
# ------------------------------------------------------------- #
# --------------------------- noise --------------------------- #
# ------------------------------------------------------------- #
# ----------------------- Gaussian Noise ----------------------- #
def generate_gaussian_noise(img, sigma=10, gray_noise=False):
"""Generate Gaussian noise.
Args:
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
sigma (float): Noise scale (measured in range 255). Default: 10.
Returns:
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
float32.
"""
if gray_noise:
noise = np.float32(np.random.randn(*(img.shape[0:2]))) * sigma / 255.
noise = np.expand_dims(noise, axis=2).repeat(3, axis=2)
else:
noise = np.float32(np.random.randn(*(img.shape))) * sigma / 255.
return noise
def add_gaussian_noise(img, sigma=10, clip=True, rounds=False, gray_noise=False):
"""Add Gaussian noise.
Args:
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
sigma (float): Noise scale (measured in range 255). Default: 10.
Returns:
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
float32.
"""
noise = generate_gaussian_noise(img, sigma, gray_noise)
out = img + noise
if clip and rounds:
out = np.clip((out * 255.0).round(), 0, 255) / 255.
elif clip:
out = np.clip(out, 0, 1)
elif rounds:
out = (out * 255.0).round() / 255.
return out
def generate_gaussian_noise_pt(img, sigma=10, gray_noise=0):
"""Add Gaussian noise (PyTorch version).
Args:
img (Tensor): Shape (b, c, h, w), range[0, 1], float32.
scale (float | Tensor): Noise scale. Default: 1.0.
Returns:
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
float32.
"""
b, _, h, w = img.size()
if not isinstance(sigma, (float, int)):
sigma = sigma.view(img.size(0), 1, 1, 1)
if isinstance(gray_noise, (float, int)):
cal_gray_noise = gray_noise > 0
else:
gray_noise = gray_noise.view(b, 1, 1, 1)
cal_gray_noise = torch.sum(gray_noise) > 0
if cal_gray_noise:
noise_gray = torch.randn(*img.size()[2:4], dtype=img.dtype, device=img.device) * sigma / 255.
noise_gray = noise_gray.view(b, 1, h, w)
# always calculate color noise
noise = torch.randn(*img.size(), dtype=img.dtype, device=img.device) * sigma / 255.
if cal_gray_noise:
noise = noise * (1 - gray_noise) + noise_gray * gray_noise
return noise
def add_gaussian_noise_pt(img, sigma=10, gray_noise=0, clip=True, rounds=False):
"""Add Gaussian noise (PyTorch version).
Args:
img (Tensor): Shape (b, c, h, w), range[0, 1], float32.
scale (float | Tensor): Noise scale. Default: 1.0.
Returns:
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
float32.
"""
noise = generate_gaussian_noise_pt(img, sigma, gray_noise)
out = img + noise
if clip and rounds:
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
elif clip:
out = torch.clamp(out, 0, 1)
elif rounds:
out = (out * 255.0).round() / 255.
return out
# ----------------------- Random Gaussian Noise ----------------------- #
def random_generate_gaussian_noise(img, sigma_range=(0, 10), gray_prob=0):
sigma = np.random.uniform(sigma_range[0], sigma_range[1])
if np.random.uniform() < gray_prob:
gray_noise = True
else:
gray_noise = False
return generate_gaussian_noise(img, sigma, gray_noise)
def random_add_gaussian_noise(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
noise = random_generate_gaussian_noise(img, sigma_range, gray_prob)
out = img + noise
if clip and rounds:
out = np.clip((out * 255.0).round(), 0, 255) / 255.
elif clip:
out = np.clip(out, 0, 1)
elif rounds:
out = (out * 255.0).round() / 255.
return out
def random_generate_gaussian_noise_pt(img, sigma_range=(0, 10), gray_prob=0):
sigma = torch.rand(
img.size(0), dtype=img.dtype, device=img.device) * (sigma_range[1] - sigma_range[0]) + sigma_range[0]
gray_noise = torch.rand(img.size(0), dtype=img.dtype, device=img.device)
gray_noise = (gray_noise < gray_prob).float()
return generate_gaussian_noise_pt(img, sigma, gray_noise)
def random_add_gaussian_noise_pt(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
noise = random_generate_gaussian_noise_pt(img, sigma_range, gray_prob)
out = img + noise
if clip and rounds:
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
elif clip:
out = torch.clamp(out, 0, 1)
elif rounds:
out = (out * 255.0).round() / 255.
return out
# ----------------------- Poisson (Shot) Noise ----------------------- #
def generate_poisson_noise(img, scale=1.0, gray_noise=False):
"""Generate poisson noise.
Reference: https://github.com/scikit-image/scikit-image/blob/main/skimage/util/noise.py#L37-L219
Args:
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
scale (float): Noise scale. Default: 1.0.
gray_noise (bool): Whether generate gray noise. Default: False.
Returns:
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
float32.
"""
if gray_noise:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# round and clip image for counting vals correctly
img = np.clip((img * 255.0).round(), 0, 255) / 255.
vals = len(np.unique(img))
vals = 2**np.ceil(np.log2(vals))
out = np.float32(np.random.poisson(img * vals) / float(vals))
noise = out - img
if gray_noise:
noise = np.repeat(noise[:, :, np.newaxis], 3, axis=2)
return noise * scale
def add_poisson_noise(img, scale=1.0, clip=True, rounds=False, gray_noise=False):
"""Add poisson noise.
Args:
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
scale (float): Noise scale. Default: 1.0.
gray_noise (bool): Whether generate gray noise. Default: False.
Returns:
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
float32.
"""
noise = generate_poisson_noise(img, scale, gray_noise)
out = img + noise
if clip and rounds:
out = np.clip((out * 255.0).round(), 0, 255) / 255.
elif clip:
out = np.clip(out, 0, 1)
elif rounds:
out = (out * 255.0).round() / 255.
return out
def generate_poisson_noise_pt(img, scale=1.0, gray_noise=0):
"""Generate a batch of poisson noise (PyTorch version)
Args:
img (Tensor): Input image, shape (b, c, h, w), range [0, 1], float32.
scale (float | Tensor): Noise scale. Number or Tensor with shape (b).
Default: 1.0.
gray_noise (float | Tensor): 0-1 number or Tensor with shape (b).
0 for False, 1 for True. Default: 0.
Returns:
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
float32.
"""
b, _, h, w = img.size()
if isinstance(gray_noise, (float, int)):
cal_gray_noise = gray_noise > 0
else:
gray_noise = gray_noise.view(b, 1, 1, 1)
cal_gray_noise = torch.sum(gray_noise) > 0
if cal_gray_noise:
img_gray = rgb_to_grayscale(img, num_output_channels=1)
# round and clip image for counting vals correctly
img_gray = torch.clamp((img_gray * 255.0).round(), 0, 255) / 255.
# use for-loop to get the unique values for each sample
vals_list = [len(torch.unique(img_gray[i, :, :, :])) for i in range(b)]
vals_list = [2**np.ceil(np.log2(vals)) for vals in vals_list]
vals = img_gray.new_tensor(vals_list).view(b, 1, 1, 1)
out = torch.poisson(img_gray * vals) / vals
noise_gray = out - img_gray
noise_gray = noise_gray.expand(b, 3, h, w)
# always calculate color noise
# round and clip image for counting vals correctly
img = torch.clamp((img * 255.0).round(), 0, 255) / 255.
# use for-loop to get the unique values for each sample
vals_list = [len(torch.unique(img[i, :, :, :])) for i in range(b)]
vals_list = [2**np.ceil(np.log2(vals)) for vals in vals_list]
vals = img.new_tensor(vals_list).view(b, 1, 1, 1)
out = torch.poisson(img * vals) / vals
noise = out - img
if cal_gray_noise:
noise = noise * (1 - gray_noise) + noise_gray * gray_noise
if not isinstance(scale, (float, int)):
scale = scale.view(b, 1, 1, 1)
return noise * scale
def add_poisson_noise_pt(img, scale=1.0, clip=True, rounds=False, gray_noise=0):
"""Add poisson noise to a batch of images (PyTorch version).
Args:
img (Tensor): Input image, shape (b, c, h, w), range [0, 1], float32.
scale (float | Tensor): Noise scale. Number or Tensor with shape (b).
Default: 1.0.
gray_noise (float | Tensor): 0-1 number or Tensor with shape (b).
0 for False, 1 for True. Default: 0.
Returns:
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
float32.
"""
noise = generate_poisson_noise_pt(img, scale, gray_noise)
out = img + noise
if clip and rounds:
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
elif clip:
out = torch.clamp(out, 0, 1)
elif rounds:
out = (out * 255.0).round() / 255.
return out
# ----------------------- Random Poisson (Shot) Noise ----------------------- #
def random_generate_poisson_noise(img, scale_range=(0, 1.0), gray_prob=0):
scale = np.random.uniform(scale_range[0], scale_range[1])
if np.random.uniform() < gray_prob:
gray_noise = True
else:
gray_noise = False
return generate_poisson_noise(img, scale, gray_noise)
def random_add_poisson_noise(img, scale_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
noise = random_generate_poisson_noise(img, scale_range, gray_prob)
out = img + noise
if clip and rounds:
out = np.clip((out * 255.0).round(), 0, 255) / 255.
elif clip:
out = np.clip(out, 0, 1)
elif rounds:
out = (out * 255.0).round() / 255.
return out
def random_generate_poisson_noise_pt(img, scale_range=(0, 1.0), gray_prob=0):
scale = torch.rand(
img.size(0), dtype=img.dtype, device=img.device) * (scale_range[1] - scale_range[0]) + scale_range[0]
gray_noise = torch.rand(img.size(0), dtype=img.dtype, device=img.device)
gray_noise = (gray_noise < gray_prob).float()
return generate_poisson_noise_pt(img, scale, gray_noise)
def random_add_poisson_noise_pt(img, scale_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
noise = random_generate_poisson_noise_pt(img, scale_range, gray_prob)
out = img + noise
if clip and rounds:
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
elif clip:
out = torch.clamp(out, 0, 1)
elif rounds:
out = (out * 255.0).round() / 255.
return out
# ------------------------------------------------------------------------ #
# --------------------------- JPEG compression --------------------------- #
# ------------------------------------------------------------------------ #
def add_jpg_compression(img, quality=90):
"""Add JPG compression artifacts.
Args:
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
quality (float): JPG compression quality. 0 for lowest quality, 100 for
best quality. Default: 90.
Returns:
(Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1],
float32.
"""
img = np.clip(img, 0, 1)
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
_, encimg = cv2.imencode('.jpg', img * 255., encode_param)
img = np.float32(cv2.imdecode(encimg, 1)) / 255.
return img
def random_add_jpg_compression(img, quality_range=(90, 100)):
"""Randomly add JPG compression artifacts.
Args:
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
quality_range (tuple[float] | list[float]): JPG compression quality
range. 0 for lowest quality, 100 for best quality.
Default: (90, 100).
Returns:
(Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1],
float32.
"""
quality = np.random.uniform(quality_range[0], quality_range[1])
return add_jpg_compression(img, quality)