Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import os | |
def parse_args(input_args=None): | |
parser = argparse.ArgumentParser(description="Train Consistency Encoder.") | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--pretrained_vae_model_name_or_path", | |
type=str, | |
default=None, | |
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--variant", | |
type=str, | |
default=None, | |
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
) | |
# parser.add_argument( | |
# "--instance_data_dir", | |
# type=str, | |
# required=True, | |
# help=("A folder containing the training data. "), | |
# ) | |
parser.add_argument( | |
"--data_config_path", | |
type=str, | |
required=True, | |
help=("A folder containing the training data. "), | |
) | |
parser.add_argument( | |
"--cache_dir", | |
type=str, | |
default=None, | |
help="The directory where the downloaded models and datasets will be stored.", | |
) | |
parser.add_argument( | |
"--image_column", | |
type=str, | |
default="image", | |
help="The column of the dataset containing the target image. By " | |
"default, the standard Image Dataset maps out 'file_name' " | |
"to 'image'.", | |
) | |
parser.add_argument( | |
"--caption_column", | |
type=str, | |
default=None, | |
help="The column of the dataset containing the instance prompt for each image", | |
) | |
parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.") | |
parser.add_argument( | |
"--instance_prompt", | |
type=str, | |
default=None, | |
required=True, | |
help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'", | |
) | |
parser.add_argument( | |
"--validation_prompt", | |
type=str, | |
default=None, | |
help="A prompt that is used during validation to verify that the model is learning.", | |
) | |
parser.add_argument( | |
"--num_train_vis_images", | |
type=int, | |
default=2, | |
help="Number of images that should be generated during validation with `validation_prompt`.", | |
) | |
parser.add_argument( | |
"--num_validation_images", | |
type=int, | |
default=2, | |
help="Number of images that should be generated during validation with `validation_prompt`.", | |
) | |
parser.add_argument( | |
"--validation_vis_steps", | |
type=int, | |
default=500, | |
help=( | |
"Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt" | |
" `args.validation_prompt` multiple times: `args.num_validation_images`." | |
), | |
) | |
parser.add_argument( | |
"--train_vis_steps", | |
type=int, | |
default=500, | |
help=( | |
"Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt" | |
" `args.validation_prompt` multiple times: `args.num_validation_images`." | |
), | |
) | |
parser.add_argument( | |
"--vis_lcm", | |
type=bool, | |
default=True, | |
help=( | |
"Also log results of LCM inference", | |
), | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="lora-dreambooth-model", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument("--save_only_encoder", action="store_true", help="Only save the encoder and not the full accelerator state") | |
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
parser.add_argument("--freeze_encoder_unet", action="store_true", help="Don't train encoder unet") | |
parser.add_argument("--predict_word_embedding", action="store_true", help="Predict word embeddings in addition to KV features") | |
parser.add_argument("--ip_adapter_feature_extractor_path", type=str, help="Path to pre-trained feature extractor for IP-adapter") | |
parser.add_argument("--ip_adapter_model_path", type=str, help="Path to pre-trained IP-adapter.") | |
parser.add_argument("--ip_adapter_tokens", type=int, default=16, help="Number of tokens to use in IP-adapter cross attention mechanism") | |
parser.add_argument("--optimize_adapter", action="store_true", help="Optimize IP-adapter parameters (projector + cross-attention layers)") | |
parser.add_argument("--adapter_attention_scale", type=float, default=1.0, help="Relative strength of the adapter cross attention layers") | |
parser.add_argument("--adapter_lr", type=float, help="Learning rate for the adapter parameters. Defaults to the global LR if not provided") | |
parser.add_argument("--noisy_encoder_input", action="store_true", help="Noise the encoder input to the same step as the decoder?") | |
# related to CFG: | |
parser.add_argument("--adapter_drop_chance", type=float, default=0.0, help="Chance to drop adapter condition input during training") | |
parser.add_argument("--text_drop_chance", type=float, default=0.0, help="Chance to drop text condition during training") | |
parser.add_argument("--kv_drop_chance", type=float, default=0.0, help="Chance to drop KV condition during training") | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=1024, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--crops_coords_top_left_h", | |
type=int, | |
default=0, | |
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), | |
) | |
parser.add_argument( | |
"--crops_coords_top_left_w", | |
type=int, | |
default=0, | |
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), | |
) | |
parser.add_argument( | |
"--center_crop", | |
default=False, | |
action="store_true", | |
help=( | |
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
" cropped. The images will be resized to the resolution first before cropping." | |
), | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument("--num_train_epochs", type=int, default=1) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=None, | |
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
) | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=500, | |
help=( | |
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" | |
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" | |
" training using `--resume_from_checkpoint`." | |
), | |
) | |
parser.add_argument( | |
"--checkpoints_total_limit", | |
type=int, | |
default=5, | |
help=("Max number of checkpoints to store."), | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument("--max_timesteps_for_x0_loss", type=int, default=1001) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1e-4, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
default=False, | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="constant", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--snr_gamma", | |
type=float, | |
default=None, | |
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " | |
"More details here: https://arxiv.org/abs/2303.09556.", | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
) | |
parser.add_argument( | |
"--lr_num_cycles", | |
type=int, | |
default=1, | |
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
) | |
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=0, | |
help=( | |
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
), | |
) | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") | |
parser.add_argument( | |
"--adam_epsilon", | |
type=float, | |
default=1e-08, | |
help="Epsilon value for the Adam optimizer and Prodigy optimizers.", | |
) | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default="wandb", | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
parser.add_argument( | |
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
) | |
parser.add_argument( | |
"--rank", | |
type=int, | |
default=4, | |
help=("The dimension of the LoRA update matrices."), | |
) | |
parser.add_argument( | |
"--pretrained_lcm_lora_path", | |
type=str, | |
default="latent-consistency/lcm-lora-sdxl", | |
help=("Path for lcm lora pretrained"), | |
) | |
parser.add_argument( | |
"--losses_config_path", | |
type=str, | |
required=True, | |
help=("A yaml file containing losses to use and their weights."), | |
) | |
parser.add_argument( | |
"--lcm_every_k_steps", | |
type=int, | |
default=-1, | |
help="How often to run lcm. If -1, lcm is not run." | |
) | |
parser.add_argument( | |
"--lcm_batch_size", | |
type=int, | |
default=1, | |
help="Batch size for lcm." | |
) | |
parser.add_argument( | |
"--lcm_max_timestep", | |
type=int, | |
default=1000, | |
help="Max timestep to use with LCM." | |
) | |
parser.add_argument( | |
"--lcm_sample_scale_every_k_steps", | |
type=int, | |
default=-1, | |
help="How often to change lcm scale. If -1, scale is fixed at 1." | |
) | |
parser.add_argument( | |
"--lcm_min_scale", | |
type=float, | |
default=0.1, | |
help="When sampling lcm scale, the minimum scale to use." | |
) | |
parser.add_argument( | |
"--scale_lcm_by_max_step", | |
action="store_true", | |
help="scale LCM lora alpha linearly by the maximal timestep sampled that iteration" | |
) | |
parser.add_argument( | |
"--lcm_sample_full_lcm_prob", | |
type=float, | |
default=0.2, | |
help="When sampling lcm scale, the probability of using full lcm (scale of 1)." | |
) | |
parser.add_argument( | |
"--run_on_cpu", | |
action="store_true", | |
help="whether to run on cpu or not" | |
) | |
parser.add_argument( | |
"--experiment_name", | |
type=str, | |
help=("A short description of the experiment to add to the wand run log. "), | |
) | |
parser.add_argument("--encoder_lora_rank", type=int, default=0, help="Rank of Lora in unet encoder. 0 means no lora") | |
parser.add_argument("--kvcopy_lora_rank", type=int, default=0, help="Rank of lora in the kvcopy modules. 0 means no lora") | |
if input_args is not None: | |
args = parser.parse_args(input_args) | |
else: | |
args = parser.parse_args() | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
args.optimizer = "AdamW" | |
return args |