Hunyuan3D-1.0 / basicsr /utils /val_degradation_pipeline.py
gokaygokay's picture
Upload 556 files
0324143 verified
raw
history blame
15.3 kB
import cv2
import math
import numpy as np
import random
import torch
from torch.utils import data as data
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
from basicsr.data.transforms import augment
from basicsr.utils import img2tensor, DiffJPEG, USMSharp
from basicsr.utils.img_process_util import filter2D
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
from basicsr.data.transforms import paired_random_crop
AUGMENT_OPT = {
'use_hflip': False,
'use_rot': False
}
KERNEL_OPT = {
'blur_kernel_size': 21,
'kernel_list': ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'],
'kernel_prob': [0.45, 0.25, 0.12, 0.03, 0.12, 0.03],
'sinc_prob': 0.1,
'blur_sigma': [0.2, 3],
'betag_range': [0.5, 4],
'betap_range': [1, 2],
'blur_kernel_size2': 21,
'kernel_list2': ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'],
'kernel_prob2': [0.45, 0.25, 0.12, 0.03, 0.12, 0.03],
'sinc_prob2': 0.1,
'blur_sigma2': [0.2, 1.5],
'betag_range2': [0.5, 4],
'betap_range2': [1, 2],
'final_sinc_prob': 0.8,
}
DEGRADE_OPT = {
'resize_prob': [0.2, 0.7, 0.1], # up, down, keep
'resize_range': [0.15, 1.5],
'gaussian_noise_prob': 0.5,
'noise_range': [1, 30],
'poisson_scale_range': [0.05, 3],
'gray_noise_prob': 0.4,
'jpeg_range': [30, 95],
# the second degradation process
'second_blur_prob': 0.8,
'resize_prob2': [0.3, 0.4, 0.3], # up, down, keep
'resize_range2': [0.3, 1.2],
'gaussian_noise_prob2': 0.5,
'noise_range2': [1, 25],
'poisson_scale_range2': [0.05, 2.5],
'gray_noise_prob2': 0.4,
'jpeg_range2': [30, 95],
'gt_size': 512,
'no_degradation_prob': 0.01,
'use_usm': True,
'sf': 8,
'random_size': False,
'resize_lq': True
}
class RealESRGANDegradation:
def __init__(self, augment_opt=None, kernel_opt=None, degrade_opt=None, device='cuda', resolution=None):
if augment_opt is None:
augment_opt = AUGMENT_OPT
self.augment_opt = augment_opt
if kernel_opt is None:
kernel_opt = KERNEL_OPT
self.kernel_opt = kernel_opt
if degrade_opt is None:
degrade_opt = DEGRADE_OPT
self.degrade_opt = degrade_opt
if resolution is not None:
self.degrade_opt['gt_size'] = resolution
self.device = device
self.jpeger = DiffJPEG(differentiable=False).to(self.device)
self.usm_sharpener = USMSharp().to(self.device)
# blur settings for the first degradation
self.blur_kernel_size = kernel_opt['blur_kernel_size']
self.kernel_list = kernel_opt['kernel_list']
self.kernel_prob = kernel_opt['kernel_prob'] # a list for each kernel probability
self.blur_sigma = kernel_opt['blur_sigma']
self.betag_range = kernel_opt['betag_range'] # betag used in generalized Gaussian blur kernels
self.betap_range = kernel_opt['betap_range'] # betap used in plateau blur kernels
self.sinc_prob = kernel_opt['sinc_prob'] # the probability for sinc filters
# blur settings for the second degradation
self.blur_kernel_size2 = kernel_opt['blur_kernel_size2']
self.kernel_list2 = kernel_opt['kernel_list2']
self.kernel_prob2 = kernel_opt['kernel_prob2']
self.blur_sigma2 = kernel_opt['blur_sigma2']
self.betag_range2 = kernel_opt['betag_range2']
self.betap_range2 = kernel_opt['betap_range2']
self.sinc_prob2 = kernel_opt['sinc_prob2']
# a final sinc filter
self.final_sinc_prob = kernel_opt['final_sinc_prob']
self.kernel_range = [2 * v + 1 for v in range(3, 11)] # kernel size ranges from 7 to 21
# TODO: kernel range is now hard-coded, should be in the configure file
self.pulse_tensor = torch.zeros(21, 21).float() # convolving with pulse tensor brings no blurry effect
self.pulse_tensor[10, 10] = 1
def get_kernel(self):
# ------------------------ Generate kernels (used in the first degradation) ------------------------ #
kernel_size = random.choice(self.kernel_range)
if np.random.uniform() < self.kernel_opt['sinc_prob']:
# this sinc filter setting is for kernels ranging from [7, 21]
if kernel_size < 13:
omega_c = np.random.uniform(np.pi / 3, np.pi)
else:
omega_c = np.random.uniform(np.pi / 5, np.pi)
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
else:
kernel = random_mixed_kernels(
self.kernel_list,
self.kernel_prob,
kernel_size,
self.blur_sigma,
self.blur_sigma, [-math.pi, math.pi],
self.betag_range,
self.betap_range,
noise_range=None)
# pad kernel
pad_size = (21 - kernel_size) // 2
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
# ------------------------ Generate kernels (used in the second degradation) ------------------------ #
kernel_size = random.choice(self.kernel_range)
if np.random.uniform() < self.kernel_opt['sinc_prob2']:
if kernel_size < 13:
omega_c = np.random.uniform(np.pi / 3, np.pi)
else:
omega_c = np.random.uniform(np.pi / 5, np.pi)
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
else:
kernel2 = random_mixed_kernels(
self.kernel_list2,
self.kernel_prob2,
kernel_size,
self.blur_sigma2,
self.blur_sigma2, [-math.pi, math.pi],
self.betag_range2,
self.betap_range2,
noise_range=None)
# pad kernel
pad_size = (21 - kernel_size) // 2
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))
# ------------------------------------- the final sinc kernel ------------------------------------- #
if np.random.uniform() < self.kernel_opt['final_sinc_prob']:
kernel_size = random.choice(self.kernel_range)
omega_c = np.random.uniform(np.pi / 3, np.pi)
sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
sinc_kernel = torch.FloatTensor(sinc_kernel)
else:
sinc_kernel = self.pulse_tensor
# BGR to RGB, HWC to CHW, numpy to tensor
kernel = torch.FloatTensor(kernel)
kernel2 = torch.FloatTensor(kernel2)
return (kernel, kernel2, sinc_kernel)
@torch.no_grad()
def __call__(self, img_gt, kernels=None):
'''
:param: img_gt: BCHW, RGB, [0, 1] float32 tensor
'''
if kernels is None:
kernel = []
kernel2 = []
sinc_kernel = []
for _ in range(img_gt.shape[0]):
k, k2, sk = self.get_kernel()
kernel.append(k)
kernel2.append(k2)
sinc_kernel.append(sk)
kernel = torch.stack(kernel)
kernel2 = torch.stack(kernel2)
sinc_kernel = torch.stack(sinc_kernel)
else:
# kernels created in dataset.
kernel, kernel2, sinc_kernel = kernels
# ----------------------- Pre-process ----------------------- #
im_gt = img_gt.to(self.device)
if self.degrade_opt['sf'] == 8:
resized_gt = torch.nn.functional.interpolate(im_gt, scale_factor=0.5, mode='area')
else:
resized_gt = im_gt
if self.degrade_opt['use_usm']:
resized_gt = self.usm_sharpener(resized_gt)
resized_gt = resized_gt.to(memory_format=torch.contiguous_format).float()
kernel = kernel.to(self.device)
kernel2 = kernel2.to(self.device)
sinc_kernel = sinc_kernel.to(self.device)
ori_h, ori_w = im_gt.size()[2:4]
# ----------------------- The first degradation process ----------------------- #
# blur
out = filter2D(resized_gt, kernel)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
self.degrade_opt['resize_prob'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, self.degrade_opt['resize_range'][1])
elif updown_type == 'down':
scale = random.uniform(self.degrade_opt['resize_range'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = torch.nn.functional.interpolate(out, scale_factor=scale, mode=mode)
# add noise
gray_noise_prob = self.degrade_opt['gray_noise_prob']
if random.random() < self.degrade_opt['gaussian_noise_prob']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=self.degrade_opt['noise_range'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=self.degrade_opt['poisson_scale_range'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range'])
out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
out = self.jpeger(out, quality=jpeg_p)
# ----------------------- The second degradation process ----------------------- #
# blur
if random.random() < self.degrade_opt['second_blur_prob']:
out = out.contiguous()
out = filter2D(out, kernel2)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
self.degrade_opt['resize_prob2'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, self.degrade_opt['resize_range2'][1])
elif updown_type == 'down':
scale = random.uniform(self.degrade_opt['resize_range2'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = torch.nn.functional.interpolate(
out,
size=(int(ori_h / self.degrade_opt['sf'] * scale),
int(ori_w / self.degrade_opt['sf'] * scale)),
mode=mode,
)
# add noise
gray_noise_prob = self.degrade_opt['gray_noise_prob2']
if random.random() < self.degrade_opt['gaussian_noise_prob2']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=self.degrade_opt['noise_range2'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=self.degrade_opt['poisson_scale_range2'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False,
)
# JPEG compression + the final sinc filter
# We also need to resize images to desired sizes. We group [resize back + sinc filter] together
# as one operation.
# We consider two orders:
# 1. [resize back + sinc filter] + JPEG compression
# 2. JPEG compression + [resize back + sinc filter]
# Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
if random.random() < 0.5:
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = torch.nn.functional.interpolate(
out,
size=(ori_h // self.degrade_opt['sf'],
ori_w // self.degrade_opt['sf']),
mode=mode,
)
out = out.contiguous()
out = filter2D(out, sinc_kernel)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
else:
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = torch.nn.functional.interpolate(
out,
size=(ori_h // self.degrade_opt['sf'],
ori_w // self.degrade_opt['sf']),
mode=mode,
)
out = out.contiguous()
out = filter2D(out, sinc_kernel)
# clamp and round
im_lq = torch.clamp(out, 0, 1.0)
# random crop
gt_size = self.degrade_opt['gt_size']
patch_gt, patch_lq, gt_crop_param = paired_random_crop(im_gt, im_lq, gt_size, self.degrade_opt['sf'])
if self.degrade_opt['resize_lq']:
im_lq = torch.nn.functional.interpolate(
im_lq,
size=(im_gt.size(-2),
im_gt.size(-1)),
mode='bicubic',
)
patch_lq = torch.nn.functional.interpolate(
patch_lq,
size=(patch_gt.size(-2),
patch_gt.size(-1)),
mode='bicubic',
)
# if random.random() < self.degrade_opt['no_degradation_prob'] or torch.isnan(im_lq).any():
# im_lq = im_gt
# sharpen self.gt again, as we have changed the self.gt with self._dequeue_and_enqueue
im_lq = im_lq.contiguous() # for the warning: grad and param do not obey the gradient layout contract
im_lq = im_lq*2 - 1.0
im_gt = im_gt*2 - 1.0
patch_lq = patch_lq*2 - 1.0
patch_gt = patch_gt*2 - 1.0
if self.degrade_opt['random_size']:
raise NotImplementedError
im_lq, im_gt = self.randn_cropinput(im_lq, im_gt)
im_lq = torch.clamp(im_lq, -1.0, 1.0)
im_gt = torch.clamp(im_gt, -1.0, 1.0)
patch_lq = torch.clamp(patch_lq, -1.0, 1.0)
patch_gt = torch.clamp(patch_gt, -1.0, 1.0)
return (im_lq, im_gt, patch_lq, patch_gt, gt_crop_param)