Spaces:
Running
on
Zero
Running
on
Zero
import cv2 | |
import math | |
import numpy as np | |
import random | |
import torch | |
from torch.utils import data as data | |
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels | |
from basicsr.data.transforms import augment | |
from basicsr.utils import img2tensor, DiffJPEG, USMSharp | |
from basicsr.utils.img_process_util import filter2D | |
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt | |
from basicsr.data.transforms import paired_random_crop | |
AUGMENT_OPT = { | |
'use_hflip': False, | |
'use_rot': False | |
} | |
KERNEL_OPT = { | |
'blur_kernel_size': 21, | |
'kernel_list': ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'], | |
'kernel_prob': [0.45, 0.25, 0.12, 0.03, 0.12, 0.03], | |
'sinc_prob': 0.1, | |
'blur_sigma': [0.2, 3], | |
'betag_range': [0.5, 4], | |
'betap_range': [1, 2], | |
'blur_kernel_size2': 21, | |
'kernel_list2': ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'], | |
'kernel_prob2': [0.45, 0.25, 0.12, 0.03, 0.12, 0.03], | |
'sinc_prob2': 0.1, | |
'blur_sigma2': [0.2, 1.5], | |
'betag_range2': [0.5, 4], | |
'betap_range2': [1, 2], | |
'final_sinc_prob': 0.8, | |
} | |
DEGRADE_OPT = { | |
'resize_prob': [0.2, 0.7, 0.1], # up, down, keep | |
'resize_range': [0.15, 1.5], | |
'gaussian_noise_prob': 0.5, | |
'noise_range': [1, 30], | |
'poisson_scale_range': [0.05, 3], | |
'gray_noise_prob': 0.4, | |
'jpeg_range': [30, 95], | |
# the second degradation process | |
'second_blur_prob': 0.8, | |
'resize_prob2': [0.3, 0.4, 0.3], # up, down, keep | |
'resize_range2': [0.3, 1.2], | |
'gaussian_noise_prob2': 0.5, | |
'noise_range2': [1, 25], | |
'poisson_scale_range2': [0.05, 2.5], | |
'gray_noise_prob2': 0.4, | |
'jpeg_range2': [30, 95], | |
'gt_size': 512, | |
'no_degradation_prob': 0.01, | |
'use_usm': True, | |
'sf': 8, | |
'random_size': False, | |
'resize_lq': True | |
} | |
class RealESRGANDegradation: | |
def __init__(self, augment_opt=None, kernel_opt=None, degrade_opt=None, device='cuda', resolution=None): | |
if augment_opt is None: | |
augment_opt = AUGMENT_OPT | |
self.augment_opt = augment_opt | |
if kernel_opt is None: | |
kernel_opt = KERNEL_OPT | |
self.kernel_opt = kernel_opt | |
if degrade_opt is None: | |
degrade_opt = DEGRADE_OPT | |
self.degrade_opt = degrade_opt | |
if resolution is not None: | |
self.degrade_opt['gt_size'] = resolution | |
self.device = device | |
self.jpeger = DiffJPEG(differentiable=False).to(self.device) | |
self.usm_sharpener = USMSharp().to(self.device) | |
# blur settings for the first degradation | |
self.blur_kernel_size = kernel_opt['blur_kernel_size'] | |
self.kernel_list = kernel_opt['kernel_list'] | |
self.kernel_prob = kernel_opt['kernel_prob'] # a list for each kernel probability | |
self.blur_sigma = kernel_opt['blur_sigma'] | |
self.betag_range = kernel_opt['betag_range'] # betag used in generalized Gaussian blur kernels | |
self.betap_range = kernel_opt['betap_range'] # betap used in plateau blur kernels | |
self.sinc_prob = kernel_opt['sinc_prob'] # the probability for sinc filters | |
# blur settings for the second degradation | |
self.blur_kernel_size2 = kernel_opt['blur_kernel_size2'] | |
self.kernel_list2 = kernel_opt['kernel_list2'] | |
self.kernel_prob2 = kernel_opt['kernel_prob2'] | |
self.blur_sigma2 = kernel_opt['blur_sigma2'] | |
self.betag_range2 = kernel_opt['betag_range2'] | |
self.betap_range2 = kernel_opt['betap_range2'] | |
self.sinc_prob2 = kernel_opt['sinc_prob2'] | |
# a final sinc filter | |
self.final_sinc_prob = kernel_opt['final_sinc_prob'] | |
self.kernel_range = [2 * v + 1 for v in range(3, 11)] # kernel size ranges from 7 to 21 | |
# TODO: kernel range is now hard-coded, should be in the configure file | |
self.pulse_tensor = torch.zeros(21, 21).float() # convolving with pulse tensor brings no blurry effect | |
self.pulse_tensor[10, 10] = 1 | |
def get_kernel(self): | |
# ------------------------ Generate kernels (used in the first degradation) ------------------------ # | |
kernel_size = random.choice(self.kernel_range) | |
if np.random.uniform() < self.kernel_opt['sinc_prob']: | |
# this sinc filter setting is for kernels ranging from [7, 21] | |
if kernel_size < 13: | |
omega_c = np.random.uniform(np.pi / 3, np.pi) | |
else: | |
omega_c = np.random.uniform(np.pi / 5, np.pi) | |
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) | |
else: | |
kernel = random_mixed_kernels( | |
self.kernel_list, | |
self.kernel_prob, | |
kernel_size, | |
self.blur_sigma, | |
self.blur_sigma, [-math.pi, math.pi], | |
self.betag_range, | |
self.betap_range, | |
noise_range=None) | |
# pad kernel | |
pad_size = (21 - kernel_size) // 2 | |
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) | |
# ------------------------ Generate kernels (used in the second degradation) ------------------------ # | |
kernel_size = random.choice(self.kernel_range) | |
if np.random.uniform() < self.kernel_opt['sinc_prob2']: | |
if kernel_size < 13: | |
omega_c = np.random.uniform(np.pi / 3, np.pi) | |
else: | |
omega_c = np.random.uniform(np.pi / 5, np.pi) | |
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) | |
else: | |
kernel2 = random_mixed_kernels( | |
self.kernel_list2, | |
self.kernel_prob2, | |
kernel_size, | |
self.blur_sigma2, | |
self.blur_sigma2, [-math.pi, math.pi], | |
self.betag_range2, | |
self.betap_range2, | |
noise_range=None) | |
# pad kernel | |
pad_size = (21 - kernel_size) // 2 | |
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size))) | |
# ------------------------------------- the final sinc kernel ------------------------------------- # | |
if np.random.uniform() < self.kernel_opt['final_sinc_prob']: | |
kernel_size = random.choice(self.kernel_range) | |
omega_c = np.random.uniform(np.pi / 3, np.pi) | |
sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21) | |
sinc_kernel = torch.FloatTensor(sinc_kernel) | |
else: | |
sinc_kernel = self.pulse_tensor | |
# BGR to RGB, HWC to CHW, numpy to tensor | |
kernel = torch.FloatTensor(kernel) | |
kernel2 = torch.FloatTensor(kernel2) | |
return (kernel, kernel2, sinc_kernel) | |
def __call__(self, img_gt, kernels=None): | |
''' | |
:param: img_gt: BCHW, RGB, [0, 1] float32 tensor | |
''' | |
if kernels is None: | |
kernel = [] | |
kernel2 = [] | |
sinc_kernel = [] | |
for _ in range(img_gt.shape[0]): | |
k, k2, sk = self.get_kernel() | |
kernel.append(k) | |
kernel2.append(k2) | |
sinc_kernel.append(sk) | |
kernel = torch.stack(kernel) | |
kernel2 = torch.stack(kernel2) | |
sinc_kernel = torch.stack(sinc_kernel) | |
else: | |
# kernels created in dataset. | |
kernel, kernel2, sinc_kernel = kernels | |
# ----------------------- Pre-process ----------------------- # | |
im_gt = img_gt.to(self.device) | |
if self.degrade_opt['sf'] == 8: | |
resized_gt = torch.nn.functional.interpolate(im_gt, scale_factor=0.5, mode='area') | |
else: | |
resized_gt = im_gt | |
if self.degrade_opt['use_usm']: | |
resized_gt = self.usm_sharpener(resized_gt) | |
resized_gt = resized_gt.to(memory_format=torch.contiguous_format).float() | |
kernel = kernel.to(self.device) | |
kernel2 = kernel2.to(self.device) | |
sinc_kernel = sinc_kernel.to(self.device) | |
ori_h, ori_w = im_gt.size()[2:4] | |
# ----------------------- The first degradation process ----------------------- # | |
# blur | |
out = filter2D(resized_gt, kernel) | |
# random resize | |
updown_type = random.choices( | |
['up', 'down', 'keep'], | |
self.degrade_opt['resize_prob'], | |
)[0] | |
if updown_type == 'up': | |
scale = random.uniform(1, self.degrade_opt['resize_range'][1]) | |
elif updown_type == 'down': | |
scale = random.uniform(self.degrade_opt['resize_range'][0], 1) | |
else: | |
scale = 1 | |
mode = random.choice(['area', 'bilinear', 'bicubic']) | |
out = torch.nn.functional.interpolate(out, scale_factor=scale, mode=mode) | |
# add noise | |
gray_noise_prob = self.degrade_opt['gray_noise_prob'] | |
if random.random() < self.degrade_opt['gaussian_noise_prob']: | |
out = random_add_gaussian_noise_pt( | |
out, | |
sigma_range=self.degrade_opt['noise_range'], | |
clip=True, | |
rounds=False, | |
gray_prob=gray_noise_prob, | |
) | |
else: | |
out = random_add_poisson_noise_pt( | |
out, | |
scale_range=self.degrade_opt['poisson_scale_range'], | |
gray_prob=gray_noise_prob, | |
clip=True, | |
rounds=False) | |
# JPEG compression | |
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range']) | |
out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts | |
out = self.jpeger(out, quality=jpeg_p) | |
# ----------------------- The second degradation process ----------------------- # | |
# blur | |
if random.random() < self.degrade_opt['second_blur_prob']: | |
out = out.contiguous() | |
out = filter2D(out, kernel2) | |
# random resize | |
updown_type = random.choices( | |
['up', 'down', 'keep'], | |
self.degrade_opt['resize_prob2'], | |
)[0] | |
if updown_type == 'up': | |
scale = random.uniform(1, self.degrade_opt['resize_range2'][1]) | |
elif updown_type == 'down': | |
scale = random.uniform(self.degrade_opt['resize_range2'][0], 1) | |
else: | |
scale = 1 | |
mode = random.choice(['area', 'bilinear', 'bicubic']) | |
out = torch.nn.functional.interpolate( | |
out, | |
size=(int(ori_h / self.degrade_opt['sf'] * scale), | |
int(ori_w / self.degrade_opt['sf'] * scale)), | |
mode=mode, | |
) | |
# add noise | |
gray_noise_prob = self.degrade_opt['gray_noise_prob2'] | |
if random.random() < self.degrade_opt['gaussian_noise_prob2']: | |
out = random_add_gaussian_noise_pt( | |
out, | |
sigma_range=self.degrade_opt['noise_range2'], | |
clip=True, | |
rounds=False, | |
gray_prob=gray_noise_prob, | |
) | |
else: | |
out = random_add_poisson_noise_pt( | |
out, | |
scale_range=self.degrade_opt['poisson_scale_range2'], | |
gray_prob=gray_noise_prob, | |
clip=True, | |
rounds=False, | |
) | |
# JPEG compression + the final sinc filter | |
# We also need to resize images to desired sizes. We group [resize back + sinc filter] together | |
# as one operation. | |
# We consider two orders: | |
# 1. [resize back + sinc filter] + JPEG compression | |
# 2. JPEG compression + [resize back + sinc filter] | |
# Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines. | |
if random.random() < 0.5: | |
# resize back + the final sinc filter | |
mode = random.choice(['area', 'bilinear', 'bicubic']) | |
out = torch.nn.functional.interpolate( | |
out, | |
size=(ori_h // self.degrade_opt['sf'], | |
ori_w // self.degrade_opt['sf']), | |
mode=mode, | |
) | |
out = out.contiguous() | |
out = filter2D(out, sinc_kernel) | |
# JPEG compression | |
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range2']) | |
out = torch.clamp(out, 0, 1) | |
out = self.jpeger(out, quality=jpeg_p) | |
else: | |
# JPEG compression | |
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.degrade_opt['jpeg_range2']) | |
out = torch.clamp(out, 0, 1) | |
out = self.jpeger(out, quality=jpeg_p) | |
# resize back + the final sinc filter | |
mode = random.choice(['area', 'bilinear', 'bicubic']) | |
out = torch.nn.functional.interpolate( | |
out, | |
size=(ori_h // self.degrade_opt['sf'], | |
ori_w // self.degrade_opt['sf']), | |
mode=mode, | |
) | |
out = out.contiguous() | |
out = filter2D(out, sinc_kernel) | |
# clamp and round | |
im_lq = torch.clamp(out, 0, 1.0) | |
# random crop | |
gt_size = self.degrade_opt['gt_size'] | |
patch_gt, patch_lq, gt_crop_param = paired_random_crop(im_gt, im_lq, gt_size, self.degrade_opt['sf']) | |
if self.degrade_opt['resize_lq']: | |
im_lq = torch.nn.functional.interpolate( | |
im_lq, | |
size=(im_gt.size(-2), | |
im_gt.size(-1)), | |
mode='bicubic', | |
) | |
patch_lq = torch.nn.functional.interpolate( | |
patch_lq, | |
size=(patch_gt.size(-2), | |
patch_gt.size(-1)), | |
mode='bicubic', | |
) | |
# if random.random() < self.degrade_opt['no_degradation_prob'] or torch.isnan(im_lq).any(): | |
# im_lq = im_gt | |
# sharpen self.gt again, as we have changed the self.gt with self._dequeue_and_enqueue | |
im_lq = im_lq.contiguous() # for the warning: grad and param do not obey the gradient layout contract | |
im_lq = im_lq*2 - 1.0 | |
im_gt = im_gt*2 - 1.0 | |
patch_lq = patch_lq*2 - 1.0 | |
patch_gt = patch_gt*2 - 1.0 | |
if self.degrade_opt['random_size']: | |
raise NotImplementedError | |
im_lq, im_gt = self.randn_cropinput(im_lq, im_gt) | |
im_lq = torch.clamp(im_lq, -1.0, 1.0) | |
im_gt = torch.clamp(im_gt, -1.0, 1.0) | |
patch_lq = torch.clamp(patch_lq, -1.0, 1.0) | |
patch_gt = torch.clamp(patch_gt, -1.0, 1.0) | |
return (im_lq, im_gt, patch_lq, patch_gt, gt_crop_param) | |