Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from collections import Counter | |
from os import path as osp | |
from torch import distributed as dist | |
from tqdm import tqdm | |
from basicsr.metrics import calculate_metric | |
from basicsr.utils import get_root_logger, imwrite, tensor2img | |
from basicsr.utils.dist_util import get_dist_info | |
from basicsr.utils.registry import MODEL_REGISTRY | |
from .sr_model import SRModel | |
class VideoBaseModel(SRModel): | |
"""Base video SR model.""" | |
def dist_validation(self, dataloader, current_iter, tb_logger, save_img): | |
dataset = dataloader.dataset | |
dataset_name = dataset.opt['name'] | |
with_metrics = self.opt['val']['metrics'] is not None | |
# initialize self.metric_results | |
# It is a dict: { | |
# 'folder1': tensor (num_frame x len(metrics)), | |
# 'folder2': tensor (num_frame x len(metrics)) | |
# } | |
if with_metrics: | |
if not hasattr(self, 'metric_results'): # only execute in the first run | |
self.metric_results = {} | |
num_frame_each_folder = Counter(dataset.data_info['folder']) | |
for folder, num_frame in num_frame_each_folder.items(): | |
self.metric_results[folder] = torch.zeros( | |
num_frame, len(self.opt['val']['metrics']), dtype=torch.float32, device='cuda') | |
# initialize the best metric results | |
self._initialize_best_metric_results(dataset_name) | |
# zero self.metric_results | |
rank, world_size = get_dist_info() | |
if with_metrics: | |
for _, tensor in self.metric_results.items(): | |
tensor.zero_() | |
metric_data = dict() | |
# record all frames (border and center frames) | |
if rank == 0: | |
pbar = tqdm(total=len(dataset), unit='frame') | |
for idx in range(rank, len(dataset), world_size): | |
val_data = dataset[idx] | |
val_data['lq'].unsqueeze_(0) | |
val_data['gt'].unsqueeze_(0) | |
folder = val_data['folder'] | |
frame_idx, max_idx = val_data['idx'].split('/') | |
lq_path = val_data['lq_path'] | |
self.feed_data(val_data) | |
self.test() | |
visuals = self.get_current_visuals() | |
result_img = tensor2img([visuals['result']]) | |
metric_data['img'] = result_img | |
if 'gt' in visuals: | |
gt_img = tensor2img([visuals['gt']]) | |
metric_data['img2'] = gt_img | |
del self.gt | |
# tentative for out of GPU memory | |
del self.lq | |
del self.output | |
torch.cuda.empty_cache() | |
if save_img: | |
if self.opt['is_train']: | |
raise NotImplementedError('saving image is not supported during training.') | |
else: | |
if 'vimeo' in dataset_name.lower(): # vimeo90k dataset | |
split_result = lq_path.split('/') | |
img_name = f'{split_result[-3]}_{split_result[-2]}_{split_result[-1].split(".")[0]}' | |
else: # other datasets, e.g., REDS, Vid4 | |
img_name = osp.splitext(osp.basename(lq_path))[0] | |
if self.opt['val']['suffix']: | |
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder, | |
f'{img_name}_{self.opt["val"]["suffix"]}.png') | |
else: | |
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder, | |
f'{img_name}_{self.opt["name"]}.png') | |
imwrite(result_img, save_img_path) | |
if with_metrics: | |
# calculate metrics | |
for metric_idx, opt_ in enumerate(self.opt['val']['metrics'].values()): | |
result = calculate_metric(metric_data, opt_) | |
self.metric_results[folder][int(frame_idx), metric_idx] += result | |
# progress bar | |
if rank == 0: | |
for _ in range(world_size): | |
pbar.update(1) | |
pbar.set_description(f'Test {folder}: {int(frame_idx) + world_size}/{max_idx}') | |
if rank == 0: | |
pbar.close() | |
if with_metrics: | |
if self.opt['dist']: | |
# collect data among GPUs | |
for _, tensor in self.metric_results.items(): | |
dist.reduce(tensor, 0) | |
dist.barrier() | |
else: | |
pass # assume use one gpu in non-dist testing | |
if rank == 0: | |
self._log_validation_metric_values(current_iter, dataset_name, tb_logger) | |
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img): | |
logger = get_root_logger() | |
logger.warning('nondist_validation is not implemented. Run dist_validation.') | |
self.dist_validation(dataloader, current_iter, tb_logger, save_img) | |
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger): | |
# ----------------- calculate the average values for each folder, and for each metric ----------------- # | |
# average all frames for each sub-folder | |
# metric_results_avg is a dict:{ | |
# 'folder1': tensor (len(metrics)), | |
# 'folder2': tensor (len(metrics)) | |
# } | |
metric_results_avg = { | |
folder: torch.mean(tensor, dim=0).cpu() | |
for (folder, tensor) in self.metric_results.items() | |
} | |
# total_avg_results is a dict: { | |
# 'metric1': float, | |
# 'metric2': float | |
# } | |
total_avg_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()} | |
for folder, tensor in metric_results_avg.items(): | |
for idx, metric in enumerate(total_avg_results.keys()): | |
total_avg_results[metric] += metric_results_avg[folder][idx].item() | |
# average among folders | |
for metric in total_avg_results.keys(): | |
total_avg_results[metric] /= len(metric_results_avg) | |
# update the best metric result | |
self._update_best_metric_result(dataset_name, metric, total_avg_results[metric], current_iter) | |
# ------------------------------------------ log the metric ------------------------------------------ # | |
log_str = f'Validation {dataset_name}\n' | |
for metric_idx, (metric, value) in enumerate(total_avg_results.items()): | |
log_str += f'\t # {metric}: {value:.4f}' | |
for folder, tensor in metric_results_avg.items(): | |
log_str += f'\t # {folder}: {tensor[metric_idx].item():.4f}' | |
if hasattr(self, 'best_metric_results'): | |
log_str += (f'\n\t Best: {self.best_metric_results[dataset_name][metric]["val"]:.4f} @ ' | |
f'{self.best_metric_results[dataset_name][metric]["iter"]} iter') | |
log_str += '\n' | |
logger = get_root_logger() | |
logger.info(log_str) | |
if tb_logger: | |
for metric_idx, (metric, value) in enumerate(total_avg_results.items()): | |
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter) | |
for folder, tensor in metric_results_avg.items(): | |
tb_logger.add_scalar(f'metrics/{metric}/{folder}', tensor[metric_idx].item(), current_iter) | |