Spaces:
Running
on
Zero
Running
on
Zero
import cv2 | |
import math | |
import numpy as np | |
import random | |
import torch | |
from collections import OrderedDict | |
from os import path as osp | |
from basicsr.archs import build_network | |
from basicsr.losses import build_loss | |
from basicsr.losses.gan_loss import g_path_regularize, r1_penalty | |
from basicsr.utils import imwrite, tensor2img | |
from basicsr.utils.registry import MODEL_REGISTRY | |
from .base_model import BaseModel | |
class StyleGAN2Model(BaseModel): | |
"""StyleGAN2 model.""" | |
def __init__(self, opt): | |
super(StyleGAN2Model, self).__init__(opt) | |
# define network net_g | |
self.net_g = build_network(opt['network_g']) | |
self.net_g = self.model_to_device(self.net_g) | |
self.print_network(self.net_g) | |
# load pretrained model | |
load_path = self.opt['path'].get('pretrain_network_g', None) | |
if load_path is not None: | |
param_key = self.opt['path'].get('param_key_g', 'params') | |
self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key) | |
# latent dimension: self.num_style_feat | |
self.num_style_feat = opt['network_g']['num_style_feat'] | |
num_val_samples = self.opt['val'].get('num_val_samples', 16) | |
self.fixed_sample = torch.randn(num_val_samples, self.num_style_feat, device=self.device) | |
if self.is_train: | |
self.init_training_settings() | |
def init_training_settings(self): | |
train_opt = self.opt['train'] | |
# define network net_d | |
self.net_d = build_network(self.opt['network_d']) | |
self.net_d = self.model_to_device(self.net_d) | |
self.print_network(self.net_d) | |
# load pretrained model | |
load_path = self.opt['path'].get('pretrain_network_d', None) | |
if load_path is not None: | |
param_key = self.opt['path'].get('param_key_d', 'params') | |
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True), param_key) | |
# define network net_g with Exponential Moving Average (EMA) | |
# net_g_ema only used for testing on one GPU and saving, do not need to | |
# wrap with DistributedDataParallel | |
self.net_g_ema = build_network(self.opt['network_g']).to(self.device) | |
# load pretrained model | |
load_path = self.opt['path'].get('pretrain_network_g', None) | |
if load_path is not None: | |
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema') | |
else: | |
self.model_ema(0) # copy net_g weight | |
self.net_g.train() | |
self.net_d.train() | |
self.net_g_ema.eval() | |
# define losses | |
# gan loss (wgan) | |
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device) | |
# regularization weights | |
self.r1_reg_weight = train_opt['r1_reg_weight'] # for discriminator | |
self.path_reg_weight = train_opt['path_reg_weight'] # for generator | |
self.net_g_reg_every = train_opt['net_g_reg_every'] | |
self.net_d_reg_every = train_opt['net_d_reg_every'] | |
self.mixing_prob = train_opt['mixing_prob'] | |
self.mean_path_length = 0 | |
# set up optimizers and schedulers | |
self.setup_optimizers() | |
self.setup_schedulers() | |
def setup_optimizers(self): | |
train_opt = self.opt['train'] | |
# optimizer g | |
net_g_reg_ratio = self.net_g_reg_every / (self.net_g_reg_every + 1) | |
if self.opt['network_g']['type'] == 'StyleGAN2GeneratorC': | |
normal_params = [] | |
style_mlp_params = [] | |
modulation_conv_params = [] | |
for name, param in self.net_g.named_parameters(): | |
if 'modulation' in name: | |
normal_params.append(param) | |
elif 'style_mlp' in name: | |
style_mlp_params.append(param) | |
elif 'modulated_conv' in name: | |
modulation_conv_params.append(param) | |
else: | |
normal_params.append(param) | |
optim_params_g = [ | |
{ # add normal params first | |
'params': normal_params, | |
'lr': train_opt['optim_g']['lr'] | |
}, | |
{ | |
'params': style_mlp_params, | |
'lr': train_opt['optim_g']['lr'] * 0.01 | |
}, | |
{ | |
'params': modulation_conv_params, | |
'lr': train_opt['optim_g']['lr'] / 3 | |
} | |
] | |
else: | |
normal_params = [] | |
for name, param in self.net_g.named_parameters(): | |
normal_params.append(param) | |
optim_params_g = [{ # add normal params first | |
'params': normal_params, | |
'lr': train_opt['optim_g']['lr'] | |
}] | |
optim_type = train_opt['optim_g'].pop('type') | |
lr = train_opt['optim_g']['lr'] * net_g_reg_ratio | |
betas = (0**net_g_reg_ratio, 0.99**net_g_reg_ratio) | |
self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, lr, betas=betas) | |
self.optimizers.append(self.optimizer_g) | |
# optimizer d | |
net_d_reg_ratio = self.net_d_reg_every / (self.net_d_reg_every + 1) | |
if self.opt['network_d']['type'] == 'StyleGAN2DiscriminatorC': | |
normal_params = [] | |
linear_params = [] | |
for name, param in self.net_d.named_parameters(): | |
if 'final_linear' in name: | |
linear_params.append(param) | |
else: | |
normal_params.append(param) | |
optim_params_d = [ | |
{ # add normal params first | |
'params': normal_params, | |
'lr': train_opt['optim_d']['lr'] | |
}, | |
{ | |
'params': linear_params, | |
'lr': train_opt['optim_d']['lr'] * (1 / math.sqrt(512)) | |
} | |
] | |
else: | |
normal_params = [] | |
for name, param in self.net_d.named_parameters(): | |
normal_params.append(param) | |
optim_params_d = [{ # add normal params first | |
'params': normal_params, | |
'lr': train_opt['optim_d']['lr'] | |
}] | |
optim_type = train_opt['optim_d'].pop('type') | |
lr = train_opt['optim_d']['lr'] * net_d_reg_ratio | |
betas = (0**net_d_reg_ratio, 0.99**net_d_reg_ratio) | |
self.optimizer_d = self.get_optimizer(optim_type, optim_params_d, lr, betas=betas) | |
self.optimizers.append(self.optimizer_d) | |
def feed_data(self, data): | |
self.real_img = data['gt'].to(self.device) | |
def make_noise(self, batch, num_noise): | |
if num_noise == 1: | |
noises = torch.randn(batch, self.num_style_feat, device=self.device) | |
else: | |
noises = torch.randn(num_noise, batch, self.num_style_feat, device=self.device).unbind(0) | |
return noises | |
def mixing_noise(self, batch, prob): | |
if random.random() < prob: | |
return self.make_noise(batch, 2) | |
else: | |
return [self.make_noise(batch, 1)] | |
def optimize_parameters(self, current_iter): | |
loss_dict = OrderedDict() | |
# optimize net_d | |
for p in self.net_d.parameters(): | |
p.requires_grad = True | |
self.optimizer_d.zero_grad() | |
batch = self.real_img.size(0) | |
noise = self.mixing_noise(batch, self.mixing_prob) | |
fake_img, _ = self.net_g(noise) | |
fake_pred = self.net_d(fake_img.detach()) | |
real_pred = self.net_d(self.real_img) | |
# wgan loss with softplus (logistic loss) for discriminator | |
l_d = self.cri_gan(real_pred, True, is_disc=True) + self.cri_gan(fake_pred, False, is_disc=True) | |
loss_dict['l_d'] = l_d | |
# In wgan, real_score should be positive and fake_score should be | |
# negative | |
loss_dict['real_score'] = real_pred.detach().mean() | |
loss_dict['fake_score'] = fake_pred.detach().mean() | |
l_d.backward() | |
if current_iter % self.net_d_reg_every == 0: | |
self.real_img.requires_grad = True | |
real_pred = self.net_d(self.real_img) | |
l_d_r1 = r1_penalty(real_pred, self.real_img) | |
l_d_r1 = (self.r1_reg_weight / 2 * l_d_r1 * self.net_d_reg_every + 0 * real_pred[0]) | |
# TODO: why do we need to add 0 * real_pred, otherwise, a runtime | |
# error will arise: RuntimeError: Expected to have finished | |
# reduction in the prior iteration before starting a new one. | |
# This error indicates that your module has parameters that were | |
# not used in producing loss. | |
loss_dict['l_d_r1'] = l_d_r1.detach().mean() | |
l_d_r1.backward() | |
self.optimizer_d.step() | |
# optimize net_g | |
for p in self.net_d.parameters(): | |
p.requires_grad = False | |
self.optimizer_g.zero_grad() | |
noise = self.mixing_noise(batch, self.mixing_prob) | |
fake_img, _ = self.net_g(noise) | |
fake_pred = self.net_d(fake_img) | |
# wgan loss with softplus (non-saturating loss) for generator | |
l_g = self.cri_gan(fake_pred, True, is_disc=False) | |
loss_dict['l_g'] = l_g | |
l_g.backward() | |
if current_iter % self.net_g_reg_every == 0: | |
path_batch_size = max(1, batch // self.opt['train']['path_batch_shrink']) | |
noise = self.mixing_noise(path_batch_size, self.mixing_prob) | |
fake_img, latents = self.net_g(noise, return_latents=True) | |
l_g_path, path_lengths, self.mean_path_length = g_path_regularize(fake_img, latents, self.mean_path_length) | |
l_g_path = (self.path_reg_weight * self.net_g_reg_every * l_g_path + 0 * fake_img[0, 0, 0, 0]) | |
# TODO: why do we need to add 0 * fake_img[0, 0, 0, 0] | |
l_g_path.backward() | |
loss_dict['l_g_path'] = l_g_path.detach().mean() | |
loss_dict['path_length'] = path_lengths | |
self.optimizer_g.step() | |
self.log_dict = self.reduce_loss_dict(loss_dict) | |
# EMA | |
self.model_ema(decay=0.5**(32 / (10 * 1000))) | |
def test(self): | |
with torch.no_grad(): | |
self.net_g_ema.eval() | |
self.output, _ = self.net_g_ema([self.fixed_sample]) | |
def dist_validation(self, dataloader, current_iter, tb_logger, save_img): | |
if self.opt['rank'] == 0: | |
self.nondist_validation(dataloader, current_iter, tb_logger, save_img) | |
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img): | |
assert dataloader is None, 'Validation dataloader should be None.' | |
self.test() | |
result = tensor2img(self.output, min_max=(-1, 1)) | |
if self.opt['is_train']: | |
save_img_path = osp.join(self.opt['path']['visualization'], 'train', f'train_{current_iter}.png') | |
else: | |
save_img_path = osp.join(self.opt['path']['visualization'], 'test', f'test_{self.opt["name"]}.png') | |
imwrite(result, save_img_path) | |
# add sample images to tb_logger | |
result = (result / 255.).astype(np.float32) | |
result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB) | |
if tb_logger is not None: | |
tb_logger.add_image('samples', result, global_step=current_iter, dataformats='HWC') | |
def save(self, epoch, current_iter): | |
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema']) | |
self.save_network(self.net_d, 'net_d', current_iter) | |
self.save_training_state(epoch, current_iter) | |