Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from collections import OrderedDict | |
from basicsr.utils.registry import MODEL_REGISTRY | |
from .srgan_model import SRGANModel | |
class ESRGANModel(SRGANModel): | |
"""ESRGAN model for single image super-resolution.""" | |
def optimize_parameters(self, current_iter): | |
# optimize net_g | |
for p in self.net_d.parameters(): | |
p.requires_grad = False | |
self.optimizer_g.zero_grad() | |
self.output = self.net_g(self.lq) | |
l_g_total = 0 | |
loss_dict = OrderedDict() | |
if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters): | |
# pixel loss | |
if self.cri_pix: | |
l_g_pix = self.cri_pix(self.output, self.gt) | |
l_g_total += l_g_pix | |
loss_dict['l_g_pix'] = l_g_pix | |
# perceptual loss | |
if self.cri_perceptual: | |
l_g_percep, l_g_style = self.cri_perceptual(self.output, self.gt) | |
if l_g_percep is not None: | |
l_g_total += l_g_percep | |
loss_dict['l_g_percep'] = l_g_percep | |
if l_g_style is not None: | |
l_g_total += l_g_style | |
loss_dict['l_g_style'] = l_g_style | |
# gan loss (relativistic gan) | |
real_d_pred = self.net_d(self.gt).detach() | |
fake_g_pred = self.net_d(self.output) | |
l_g_real = self.cri_gan(real_d_pred - torch.mean(fake_g_pred), False, is_disc=False) | |
l_g_fake = self.cri_gan(fake_g_pred - torch.mean(real_d_pred), True, is_disc=False) | |
l_g_gan = (l_g_real + l_g_fake) / 2 | |
l_g_total += l_g_gan | |
loss_dict['l_g_gan'] = l_g_gan | |
l_g_total.backward() | |
self.optimizer_g.step() | |
# optimize net_d | |
for p in self.net_d.parameters(): | |
p.requires_grad = True | |
self.optimizer_d.zero_grad() | |
# gan loss (relativistic gan) | |
# In order to avoid the error in distributed training: | |
# "Error detected in CudnnBatchNormBackward: RuntimeError: one of | |
# the variables needed for gradient computation has been modified by | |
# an inplace operation", | |
# we separate the backwards for real and fake, and also detach the | |
# tensor for calculating mean. | |
# real | |
fake_d_pred = self.net_d(self.output).detach() | |
real_d_pred = self.net_d(self.gt) | |
l_d_real = self.cri_gan(real_d_pred - torch.mean(fake_d_pred), True, is_disc=True) * 0.5 | |
l_d_real.backward() | |
# fake | |
fake_d_pred = self.net_d(self.output.detach()) | |
l_d_fake = self.cri_gan(fake_d_pred - torch.mean(real_d_pred.detach()), False, is_disc=True) * 0.5 | |
l_d_fake.backward() | |
self.optimizer_d.step() | |
loss_dict['l_d_real'] = l_d_real | |
loss_dict['l_d_fake'] = l_d_fake | |
loss_dict['out_d_real'] = torch.mean(real_d_pred.detach()) | |
loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach()) | |
self.log_dict = self.reduce_loss_dict(loss_dict) | |
if self.ema_decay > 0: | |
self.model_ema(decay=self.ema_decay) | |