Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...loaders.unet import FromOriginalUNetMixin | |
from ...utils import BaseOutput | |
from ..attention_processor import Attention | |
from ..modeling_utils import ModelMixin | |
# Copied from diffusers.pipelines.wuerstchen.modeling_wuerstchen_common.WuerstchenLayerNorm with WuerstchenLayerNorm -> SDCascadeLayerNorm | |
class SDCascadeLayerNorm(nn.LayerNorm): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def forward(self, x): | |
x = x.permute(0, 2, 3, 1) | |
x = super().forward(x) | |
return x.permute(0, 3, 1, 2) | |
class SDCascadeTimestepBlock(nn.Module): | |
def __init__(self, c, c_timestep, conds=[]): | |
super().__init__() | |
self.mapper = nn.Linear(c_timestep, c * 2) | |
self.conds = conds | |
for cname in conds: | |
setattr(self, f"mapper_{cname}", nn.Linear(c_timestep, c * 2)) | |
def forward(self, x, t): | |
t = t.chunk(len(self.conds) + 1, dim=1) | |
a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1) | |
for i, c in enumerate(self.conds): | |
ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1) | |
a, b = a + ac, b + bc | |
return x * (1 + a) + b | |
class SDCascadeResBlock(nn.Module): | |
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0): | |
super().__init__() | |
self.depthwise = nn.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c) | |
self.norm = SDCascadeLayerNorm(c, elementwise_affine=False, eps=1e-6) | |
self.channelwise = nn.Sequential( | |
nn.Linear(c + c_skip, c * 4), | |
nn.GELU(), | |
GlobalResponseNorm(c * 4), | |
nn.Dropout(dropout), | |
nn.Linear(c * 4, c), | |
) | |
def forward(self, x, x_skip=None): | |
x_res = x | |
x = self.norm(self.depthwise(x)) | |
if x_skip is not None: | |
x = torch.cat([x, x_skip], dim=1) | |
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
return x + x_res | |
# from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105 | |
class GlobalResponseNorm(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) | |
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) | |
def forward(self, x): | |
agg_norm = torch.norm(x, p=2, dim=(1, 2), keepdim=True) | |
stand_div_norm = agg_norm / (agg_norm.mean(dim=-1, keepdim=True) + 1e-6) | |
return self.gamma * (x * stand_div_norm) + self.beta + x | |
class SDCascadeAttnBlock(nn.Module): | |
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0): | |
super().__init__() | |
self.self_attn = self_attn | |
self.norm = SDCascadeLayerNorm(c, elementwise_affine=False, eps=1e-6) | |
self.attention = Attention(query_dim=c, heads=nhead, dim_head=c // nhead, dropout=dropout, bias=True) | |
self.kv_mapper = nn.Sequential(nn.SiLU(), nn.Linear(c_cond, c)) | |
def forward(self, x, kv): | |
kv = self.kv_mapper(kv) | |
norm_x = self.norm(x) | |
if self.self_attn: | |
batch_size, channel, _, _ = x.shape | |
kv = torch.cat([norm_x.view(batch_size, channel, -1).transpose(1, 2), kv], dim=1) | |
x = x + self.attention(norm_x, encoder_hidden_states=kv) | |
return x | |
class UpDownBlock2d(nn.Module): | |
def __init__(self, in_channels, out_channels, mode, enabled=True): | |
super().__init__() | |
if mode not in ["up", "down"]: | |
raise ValueError(f"{mode} not supported") | |
interpolation = ( | |
nn.Upsample(scale_factor=2 if mode == "up" else 0.5, mode="bilinear", align_corners=True) | |
if enabled | |
else nn.Identity() | |
) | |
mapping = nn.Conv2d(in_channels, out_channels, kernel_size=1) | |
self.blocks = nn.ModuleList([interpolation, mapping] if mode == "up" else [mapping, interpolation]) | |
def forward(self, x): | |
for block in self.blocks: | |
x = block(x) | |
return x | |
class StableCascadeUNetOutput(BaseOutput): | |
sample: torch.FloatTensor = None | |
class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin): | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
in_channels: int = 16, | |
out_channels: int = 16, | |
timestep_ratio_embedding_dim: int = 64, | |
patch_size: int = 1, | |
conditioning_dim: int = 2048, | |
block_out_channels: Tuple[int] = (2048, 2048), | |
num_attention_heads: Tuple[int] = (32, 32), | |
down_num_layers_per_block: Tuple[int] = (8, 24), | |
up_num_layers_per_block: Tuple[int] = (24, 8), | |
down_blocks_repeat_mappers: Optional[Tuple[int]] = ( | |
1, | |
1, | |
), | |
up_blocks_repeat_mappers: Optional[Tuple[int]] = (1, 1), | |
block_types_per_layer: Tuple[Tuple[str]] = ( | |
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"), | |
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"), | |
), | |
clip_text_in_channels: Optional[int] = None, | |
clip_text_pooled_in_channels=1280, | |
clip_image_in_channels: Optional[int] = None, | |
clip_seq=4, | |
effnet_in_channels: Optional[int] = None, | |
pixel_mapper_in_channels: Optional[int] = None, | |
kernel_size=3, | |
dropout: Union[float, Tuple[float]] = (0.1, 0.1), | |
self_attn: Union[bool, Tuple[bool]] = True, | |
timestep_conditioning_type: Tuple[str] = ("sca", "crp"), | |
switch_level: Optional[Tuple[bool]] = None, | |
): | |
""" | |
Parameters: | |
in_channels (`int`, defaults to 16): | |
Number of channels in the input sample. | |
out_channels (`int`, defaults to 16): | |
Number of channels in the output sample. | |
timestep_ratio_embedding_dim (`int`, defaults to 64): | |
Dimension of the projected time embedding. | |
patch_size (`int`, defaults to 1): | |
Patch size to use for pixel unshuffling layer | |
conditioning_dim (`int`, defaults to 2048): | |
Dimension of the image and text conditional embedding. | |
block_out_channels (Tuple[int], defaults to (2048, 2048)): | |
Tuple of output channels for each block. | |
num_attention_heads (Tuple[int], defaults to (32, 32)): | |
Number of attention heads in each attention block. Set to -1 to if block types in a layer do not have | |
attention. | |
down_num_layers_per_block (Tuple[int], defaults to [8, 24]): | |
Number of layers in each down block. | |
up_num_layers_per_block (Tuple[int], defaults to [24, 8]): | |
Number of layers in each up block. | |
down_blocks_repeat_mappers (Tuple[int], optional, defaults to [1, 1]): | |
Number of 1x1 Convolutional layers to repeat in each down block. | |
up_blocks_repeat_mappers (Tuple[int], optional, defaults to [1, 1]): | |
Number of 1x1 Convolutional layers to repeat in each up block. | |
block_types_per_layer (Tuple[Tuple[str]], optional, | |
defaults to ( | |
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"), ("SDCascadeResBlock", | |
"SDCascadeTimestepBlock", "SDCascadeAttnBlock") | |
): Block types used in each layer of the up/down blocks. | |
clip_text_in_channels (`int`, *optional*, defaults to `None`): | |
Number of input channels for CLIP based text conditioning. | |
clip_text_pooled_in_channels (`int`, *optional*, defaults to 1280): | |
Number of input channels for pooled CLIP text embeddings. | |
clip_image_in_channels (`int`, *optional*): | |
Number of input channels for CLIP based image conditioning. | |
clip_seq (`int`, *optional*, defaults to 4): | |
effnet_in_channels (`int`, *optional*, defaults to `None`): | |
Number of input channels for effnet conditioning. | |
pixel_mapper_in_channels (`int`, defaults to `None`): | |
Number of input channels for pixel mapper conditioning. | |
kernel_size (`int`, *optional*, defaults to 3): | |
Kernel size to use in the block convolutional layers. | |
dropout (Tuple[float], *optional*, defaults to (0.1, 0.1)): | |
Dropout to use per block. | |
self_attn (Union[bool, Tuple[bool]]): | |
Tuple of booleans that determine whether to use self attention in a block or not. | |
timestep_conditioning_type (Tuple[str], defaults to ("sca", "crp")): | |
Timestep conditioning type. | |
switch_level (Optional[Tuple[bool]], *optional*, defaults to `None`): | |
Tuple that indicates whether upsampling or downsampling should be applied in a block | |
""" | |
super().__init__() | |
if len(block_out_channels) != len(down_num_layers_per_block): | |
raise ValueError( | |
f"Number of elements in `down_num_layers_per_block` must match the length of `block_out_channels`: {len(block_out_channels)}" | |
) | |
elif len(block_out_channels) != len(up_num_layers_per_block): | |
raise ValueError( | |
f"Number of elements in `up_num_layers_per_block` must match the length of `block_out_channels`: {len(block_out_channels)}" | |
) | |
elif len(block_out_channels) != len(down_blocks_repeat_mappers): | |
raise ValueError( | |
f"Number of elements in `down_blocks_repeat_mappers` must match the length of `block_out_channels`: {len(block_out_channels)}" | |
) | |
elif len(block_out_channels) != len(up_blocks_repeat_mappers): | |
raise ValueError( | |
f"Number of elements in `up_blocks_repeat_mappers` must match the length of `block_out_channels`: {len(block_out_channels)}" | |
) | |
elif len(block_out_channels) != len(block_types_per_layer): | |
raise ValueError( | |
f"Number of elements in `block_types_per_layer` must match the length of `block_out_channels`: {len(block_out_channels)}" | |
) | |
if isinstance(dropout, float): | |
dropout = (dropout,) * len(block_out_channels) | |
if isinstance(self_attn, bool): | |
self_attn = (self_attn,) * len(block_out_channels) | |
# CONDITIONING | |
if effnet_in_channels is not None: | |
self.effnet_mapper = nn.Sequential( | |
nn.Conv2d(effnet_in_channels, block_out_channels[0] * 4, kernel_size=1), | |
nn.GELU(), | |
nn.Conv2d(block_out_channels[0] * 4, block_out_channels[0], kernel_size=1), | |
SDCascadeLayerNorm(block_out_channels[0], elementwise_affine=False, eps=1e-6), | |
) | |
if pixel_mapper_in_channels is not None: | |
self.pixels_mapper = nn.Sequential( | |
nn.Conv2d(pixel_mapper_in_channels, block_out_channels[0] * 4, kernel_size=1), | |
nn.GELU(), | |
nn.Conv2d(block_out_channels[0] * 4, block_out_channels[0], kernel_size=1), | |
SDCascadeLayerNorm(block_out_channels[0], elementwise_affine=False, eps=1e-6), | |
) | |
self.clip_txt_pooled_mapper = nn.Linear(clip_text_pooled_in_channels, conditioning_dim * clip_seq) | |
if clip_text_in_channels is not None: | |
self.clip_txt_mapper = nn.Linear(clip_text_in_channels, conditioning_dim) | |
if clip_image_in_channels is not None: | |
self.clip_img_mapper = nn.Linear(clip_image_in_channels, conditioning_dim * clip_seq) | |
self.clip_norm = nn.LayerNorm(conditioning_dim, elementwise_affine=False, eps=1e-6) | |
self.embedding = nn.Sequential( | |
nn.PixelUnshuffle(patch_size), | |
nn.Conv2d(in_channels * (patch_size**2), block_out_channels[0], kernel_size=1), | |
SDCascadeLayerNorm(block_out_channels[0], elementwise_affine=False, eps=1e-6), | |
) | |
def get_block(block_type, in_channels, nhead, c_skip=0, dropout=0, self_attn=True): | |
if block_type == "SDCascadeResBlock": | |
return SDCascadeResBlock(in_channels, c_skip, kernel_size=kernel_size, dropout=dropout) | |
elif block_type == "SDCascadeAttnBlock": | |
return SDCascadeAttnBlock(in_channels, conditioning_dim, nhead, self_attn=self_attn, dropout=dropout) | |
elif block_type == "SDCascadeTimestepBlock": | |
return SDCascadeTimestepBlock( | |
in_channels, timestep_ratio_embedding_dim, conds=timestep_conditioning_type | |
) | |
else: | |
raise ValueError(f"Block type {block_type} not supported") | |
# BLOCKS | |
# -- down blocks | |
self.down_blocks = nn.ModuleList() | |
self.down_downscalers = nn.ModuleList() | |
self.down_repeat_mappers = nn.ModuleList() | |
for i in range(len(block_out_channels)): | |
if i > 0: | |
self.down_downscalers.append( | |
nn.Sequential( | |
SDCascadeLayerNorm(block_out_channels[i - 1], elementwise_affine=False, eps=1e-6), | |
UpDownBlock2d( | |
block_out_channels[i - 1], block_out_channels[i], mode="down", enabled=switch_level[i - 1] | |
) | |
if switch_level is not None | |
else nn.Conv2d(block_out_channels[i - 1], block_out_channels[i], kernel_size=2, stride=2), | |
) | |
) | |
else: | |
self.down_downscalers.append(nn.Identity()) | |
down_block = nn.ModuleList() | |
for _ in range(down_num_layers_per_block[i]): | |
for block_type in block_types_per_layer[i]: | |
block = get_block( | |
block_type, | |
block_out_channels[i], | |
num_attention_heads[i], | |
dropout=dropout[i], | |
self_attn=self_attn[i], | |
) | |
down_block.append(block) | |
self.down_blocks.append(down_block) | |
if down_blocks_repeat_mappers is not None: | |
block_repeat_mappers = nn.ModuleList() | |
for _ in range(down_blocks_repeat_mappers[i] - 1): | |
block_repeat_mappers.append(nn.Conv2d(block_out_channels[i], block_out_channels[i], kernel_size=1)) | |
self.down_repeat_mappers.append(block_repeat_mappers) | |
# -- up blocks | |
self.up_blocks = nn.ModuleList() | |
self.up_upscalers = nn.ModuleList() | |
self.up_repeat_mappers = nn.ModuleList() | |
for i in reversed(range(len(block_out_channels))): | |
if i > 0: | |
self.up_upscalers.append( | |
nn.Sequential( | |
SDCascadeLayerNorm(block_out_channels[i], elementwise_affine=False, eps=1e-6), | |
UpDownBlock2d( | |
block_out_channels[i], block_out_channels[i - 1], mode="up", enabled=switch_level[i - 1] | |
) | |
if switch_level is not None | |
else nn.ConvTranspose2d( | |
block_out_channels[i], block_out_channels[i - 1], kernel_size=2, stride=2 | |
), | |
) | |
) | |
else: | |
self.up_upscalers.append(nn.Identity()) | |
up_block = nn.ModuleList() | |
for j in range(up_num_layers_per_block[::-1][i]): | |
for k, block_type in enumerate(block_types_per_layer[i]): | |
c_skip = block_out_channels[i] if i < len(block_out_channels) - 1 and j == k == 0 else 0 | |
block = get_block( | |
block_type, | |
block_out_channels[i], | |
num_attention_heads[i], | |
c_skip=c_skip, | |
dropout=dropout[i], | |
self_attn=self_attn[i], | |
) | |
up_block.append(block) | |
self.up_blocks.append(up_block) | |
if up_blocks_repeat_mappers is not None: | |
block_repeat_mappers = nn.ModuleList() | |
for _ in range(up_blocks_repeat_mappers[::-1][i] - 1): | |
block_repeat_mappers.append(nn.Conv2d(block_out_channels[i], block_out_channels[i], kernel_size=1)) | |
self.up_repeat_mappers.append(block_repeat_mappers) | |
# OUTPUT | |
self.clf = nn.Sequential( | |
SDCascadeLayerNorm(block_out_channels[0], elementwise_affine=False, eps=1e-6), | |
nn.Conv2d(block_out_channels[0], out_channels * (patch_size**2), kernel_size=1), | |
nn.PixelShuffle(patch_size), | |
) | |
self.gradient_checkpointing = False | |
def _set_gradient_checkpointing(self, value=False): | |
self.gradient_checkpointing = value | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Conv2d, nn.Linear)): | |
torch.nn.init.xavier_uniform_(m.weight) | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
nn.init.normal_(self.clip_txt_pooled_mapper.weight, std=0.02) | |
nn.init.normal_(self.clip_txt_mapper.weight, std=0.02) if hasattr(self, "clip_txt_mapper") else None | |
nn.init.normal_(self.clip_img_mapper.weight, std=0.02) if hasattr(self, "clip_img_mapper") else None | |
if hasattr(self, "effnet_mapper"): | |
nn.init.normal_(self.effnet_mapper[0].weight, std=0.02) # conditionings | |
nn.init.normal_(self.effnet_mapper[2].weight, std=0.02) # conditionings | |
if hasattr(self, "pixels_mapper"): | |
nn.init.normal_(self.pixels_mapper[0].weight, std=0.02) # conditionings | |
nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings | |
torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs | |
nn.init.constant_(self.clf[1].weight, 0) # outputs | |
# blocks | |
for level_block in self.down_blocks + self.up_blocks: | |
for block in level_block: | |
if isinstance(block, SDCascadeResBlock): | |
block.channelwise[-1].weight.data *= np.sqrt(1 / sum(self.config.blocks[0])) | |
elif isinstance(block, SDCascadeTimestepBlock): | |
nn.init.constant_(block.mapper.weight, 0) | |
def get_timestep_ratio_embedding(self, timestep_ratio, max_positions=10000): | |
r = timestep_ratio * max_positions | |
half_dim = self.config.timestep_ratio_embedding_dim // 2 | |
emb = math.log(max_positions) / (half_dim - 1) | |
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp() | |
emb = r[:, None] * emb[None, :] | |
emb = torch.cat([emb.sin(), emb.cos()], dim=1) | |
if self.config.timestep_ratio_embedding_dim % 2 == 1: # zero pad | |
emb = nn.functional.pad(emb, (0, 1), mode="constant") | |
return emb.to(dtype=r.dtype) | |
def get_clip_embeddings(self, clip_txt_pooled, clip_txt=None, clip_img=None): | |
if len(clip_txt_pooled.shape) == 2: | |
clip_txt_pool = clip_txt_pooled.unsqueeze(1) | |
clip_txt_pool = self.clip_txt_pooled_mapper(clip_txt_pooled).view( | |
clip_txt_pooled.size(0), clip_txt_pooled.size(1) * self.config.clip_seq, -1 | |
) | |
if clip_txt is not None and clip_img is not None: | |
clip_txt = self.clip_txt_mapper(clip_txt) | |
if len(clip_img.shape) == 2: | |
clip_img = clip_img.unsqueeze(1) | |
clip_img = self.clip_img_mapper(clip_img).view( | |
clip_img.size(0), clip_img.size(1) * self.config.clip_seq, -1 | |
) | |
clip = torch.cat([clip_txt, clip_txt_pool, clip_img], dim=1) | |
else: | |
clip = clip_txt_pool | |
return self.clip_norm(clip) | |
def _down_encode(self, x, r_embed, clip): | |
level_outputs = [] | |
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
for down_block, downscaler, repmap in block_group: | |
x = downscaler(x) | |
for i in range(len(repmap) + 1): | |
for block in down_block: | |
if isinstance(block, SDCascadeResBlock): | |
x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, use_reentrant=False) | |
elif isinstance(block, SDCascadeAttnBlock): | |
x = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), x, clip, use_reentrant=False | |
) | |
elif isinstance(block, SDCascadeTimestepBlock): | |
x = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), x, r_embed, use_reentrant=False | |
) | |
else: | |
x = x = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), use_reentrant=False | |
) | |
if i < len(repmap): | |
x = repmap[i](x) | |
level_outputs.insert(0, x) | |
else: | |
for down_block, downscaler, repmap in block_group: | |
x = downscaler(x) | |
for i in range(len(repmap) + 1): | |
for block in down_block: | |
if isinstance(block, SDCascadeResBlock): | |
x = block(x) | |
elif isinstance(block, SDCascadeAttnBlock): | |
x = block(x, clip) | |
elif isinstance(block, SDCascadeTimestepBlock): | |
x = block(x, r_embed) | |
else: | |
x = block(x) | |
if i < len(repmap): | |
x = repmap[i](x) | |
level_outputs.insert(0, x) | |
return level_outputs | |
def _up_decode(self, level_outputs, r_embed, clip): | |
x = level_outputs[0] | |
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
for i, (up_block, upscaler, repmap) in enumerate(block_group): | |
for j in range(len(repmap) + 1): | |
for k, block in enumerate(up_block): | |
if isinstance(block, SDCascadeResBlock): | |
skip = level_outputs[i] if k == 0 and i > 0 else None | |
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)): | |
orig_type = x.dtype | |
x = torch.nn.functional.interpolate( | |
x.float(), skip.shape[-2:], mode="bilinear", align_corners=True | |
) | |
x = x.to(orig_type) | |
x = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), x, skip, use_reentrant=False | |
) | |
elif isinstance(block, SDCascadeAttnBlock): | |
x = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), x, clip, use_reentrant=False | |
) | |
elif isinstance(block, SDCascadeTimestepBlock): | |
x = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), x, r_embed, use_reentrant=False | |
) | |
else: | |
x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, use_reentrant=False) | |
if j < len(repmap): | |
x = repmap[j](x) | |
x = upscaler(x) | |
else: | |
for i, (up_block, upscaler, repmap) in enumerate(block_group): | |
for j in range(len(repmap) + 1): | |
for k, block in enumerate(up_block): | |
if isinstance(block, SDCascadeResBlock): | |
skip = level_outputs[i] if k == 0 and i > 0 else None | |
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)): | |
orig_type = x.dtype | |
x = torch.nn.functional.interpolate( | |
x.float(), skip.shape[-2:], mode="bilinear", align_corners=True | |
) | |
x = x.to(orig_type) | |
x = block(x, skip) | |
elif isinstance(block, SDCascadeAttnBlock): | |
x = block(x, clip) | |
elif isinstance(block, SDCascadeTimestepBlock): | |
x = block(x, r_embed) | |
else: | |
x = block(x) | |
if j < len(repmap): | |
x = repmap[j](x) | |
x = upscaler(x) | |
return x | |
def forward( | |
self, | |
sample, | |
timestep_ratio, | |
clip_text_pooled, | |
clip_text=None, | |
clip_img=None, | |
effnet=None, | |
pixels=None, | |
sca=None, | |
crp=None, | |
return_dict=True, | |
): | |
if pixels is None: | |
pixels = sample.new_zeros(sample.size(0), 3, 8, 8) | |
# Process the conditioning embeddings | |
timestep_ratio_embed = self.get_timestep_ratio_embedding(timestep_ratio) | |
for c in self.config.timestep_conditioning_type: | |
if c == "sca": | |
cond = sca | |
elif c == "crp": | |
cond = crp | |
else: | |
cond = None | |
t_cond = cond or torch.zeros_like(timestep_ratio) | |
timestep_ratio_embed = torch.cat([timestep_ratio_embed, self.get_timestep_ratio_embedding(t_cond)], dim=1) | |
clip = self.get_clip_embeddings(clip_txt_pooled=clip_text_pooled, clip_txt=clip_text, clip_img=clip_img) | |
# Model Blocks | |
x = self.embedding(sample) | |
if hasattr(self, "effnet_mapper") and effnet is not None: | |
x = x + self.effnet_mapper( | |
nn.functional.interpolate(effnet, size=x.shape[-2:], mode="bilinear", align_corners=True) | |
) | |
if hasattr(self, "pixels_mapper"): | |
x = x + nn.functional.interpolate( | |
self.pixels_mapper(pixels), size=x.shape[-2:], mode="bilinear", align_corners=True | |
) | |
level_outputs = self._down_encode(x, timestep_ratio_embed, clip) | |
x = self._up_decode(level_outputs, timestep_ratio_embed, clip) | |
sample = self.clf(x) | |
if not return_dict: | |
return (sample,) | |
return StableCascadeUNetOutput(sample=sample) | |