Hunyuan3D-1.0 / diffusers /models /unets /unet_stable_cascade.py
gokaygokay's picture
Upload 556 files
0324143 verified
raw
history blame
29 kB
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders.unet import FromOriginalUNetMixin
from ...utils import BaseOutput
from ..attention_processor import Attention
from ..modeling_utils import ModelMixin
# Copied from diffusers.pipelines.wuerstchen.modeling_wuerstchen_common.WuerstchenLayerNorm with WuerstchenLayerNorm -> SDCascadeLayerNorm
class SDCascadeLayerNorm(nn.LayerNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, x):
x = x.permute(0, 2, 3, 1)
x = super().forward(x)
return x.permute(0, 3, 1, 2)
class SDCascadeTimestepBlock(nn.Module):
def __init__(self, c, c_timestep, conds=[]):
super().__init__()
self.mapper = nn.Linear(c_timestep, c * 2)
self.conds = conds
for cname in conds:
setattr(self, f"mapper_{cname}", nn.Linear(c_timestep, c * 2))
def forward(self, x, t):
t = t.chunk(len(self.conds) + 1, dim=1)
a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1)
for i, c in enumerate(self.conds):
ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1)
a, b = a + ac, b + bc
return x * (1 + a) + b
class SDCascadeResBlock(nn.Module):
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0):
super().__init__()
self.depthwise = nn.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c)
self.norm = SDCascadeLayerNorm(c, elementwise_affine=False, eps=1e-6)
self.channelwise = nn.Sequential(
nn.Linear(c + c_skip, c * 4),
nn.GELU(),
GlobalResponseNorm(c * 4),
nn.Dropout(dropout),
nn.Linear(c * 4, c),
)
def forward(self, x, x_skip=None):
x_res = x
x = self.norm(self.depthwise(x))
if x_skip is not None:
x = torch.cat([x, x_skip], dim=1)
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
return x + x_res
# from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105
class GlobalResponseNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
agg_norm = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
stand_div_norm = agg_norm / (agg_norm.mean(dim=-1, keepdim=True) + 1e-6)
return self.gamma * (x * stand_div_norm) + self.beta + x
class SDCascadeAttnBlock(nn.Module):
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0):
super().__init__()
self.self_attn = self_attn
self.norm = SDCascadeLayerNorm(c, elementwise_affine=False, eps=1e-6)
self.attention = Attention(query_dim=c, heads=nhead, dim_head=c // nhead, dropout=dropout, bias=True)
self.kv_mapper = nn.Sequential(nn.SiLU(), nn.Linear(c_cond, c))
def forward(self, x, kv):
kv = self.kv_mapper(kv)
norm_x = self.norm(x)
if self.self_attn:
batch_size, channel, _, _ = x.shape
kv = torch.cat([norm_x.view(batch_size, channel, -1).transpose(1, 2), kv], dim=1)
x = x + self.attention(norm_x, encoder_hidden_states=kv)
return x
class UpDownBlock2d(nn.Module):
def __init__(self, in_channels, out_channels, mode, enabled=True):
super().__init__()
if mode not in ["up", "down"]:
raise ValueError(f"{mode} not supported")
interpolation = (
nn.Upsample(scale_factor=2 if mode == "up" else 0.5, mode="bilinear", align_corners=True)
if enabled
else nn.Identity()
)
mapping = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.blocks = nn.ModuleList([interpolation, mapping] if mode == "up" else [mapping, interpolation])
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
@dataclass
class StableCascadeUNetOutput(BaseOutput):
sample: torch.FloatTensor = None
class StableCascadeUNet(ModelMixin, ConfigMixin, FromOriginalUNetMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels: int = 16,
out_channels: int = 16,
timestep_ratio_embedding_dim: int = 64,
patch_size: int = 1,
conditioning_dim: int = 2048,
block_out_channels: Tuple[int] = (2048, 2048),
num_attention_heads: Tuple[int] = (32, 32),
down_num_layers_per_block: Tuple[int] = (8, 24),
up_num_layers_per_block: Tuple[int] = (24, 8),
down_blocks_repeat_mappers: Optional[Tuple[int]] = (
1,
1,
),
up_blocks_repeat_mappers: Optional[Tuple[int]] = (1, 1),
block_types_per_layer: Tuple[Tuple[str]] = (
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"),
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"),
),
clip_text_in_channels: Optional[int] = None,
clip_text_pooled_in_channels=1280,
clip_image_in_channels: Optional[int] = None,
clip_seq=4,
effnet_in_channels: Optional[int] = None,
pixel_mapper_in_channels: Optional[int] = None,
kernel_size=3,
dropout: Union[float, Tuple[float]] = (0.1, 0.1),
self_attn: Union[bool, Tuple[bool]] = True,
timestep_conditioning_type: Tuple[str] = ("sca", "crp"),
switch_level: Optional[Tuple[bool]] = None,
):
"""
Parameters:
in_channels (`int`, defaults to 16):
Number of channels in the input sample.
out_channels (`int`, defaults to 16):
Number of channels in the output sample.
timestep_ratio_embedding_dim (`int`, defaults to 64):
Dimension of the projected time embedding.
patch_size (`int`, defaults to 1):
Patch size to use for pixel unshuffling layer
conditioning_dim (`int`, defaults to 2048):
Dimension of the image and text conditional embedding.
block_out_channels (Tuple[int], defaults to (2048, 2048)):
Tuple of output channels for each block.
num_attention_heads (Tuple[int], defaults to (32, 32)):
Number of attention heads in each attention block. Set to -1 to if block types in a layer do not have
attention.
down_num_layers_per_block (Tuple[int], defaults to [8, 24]):
Number of layers in each down block.
up_num_layers_per_block (Tuple[int], defaults to [24, 8]):
Number of layers in each up block.
down_blocks_repeat_mappers (Tuple[int], optional, defaults to [1, 1]):
Number of 1x1 Convolutional layers to repeat in each down block.
up_blocks_repeat_mappers (Tuple[int], optional, defaults to [1, 1]):
Number of 1x1 Convolutional layers to repeat in each up block.
block_types_per_layer (Tuple[Tuple[str]], optional,
defaults to (
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"), ("SDCascadeResBlock",
"SDCascadeTimestepBlock", "SDCascadeAttnBlock")
): Block types used in each layer of the up/down blocks.
clip_text_in_channels (`int`, *optional*, defaults to `None`):
Number of input channels for CLIP based text conditioning.
clip_text_pooled_in_channels (`int`, *optional*, defaults to 1280):
Number of input channels for pooled CLIP text embeddings.
clip_image_in_channels (`int`, *optional*):
Number of input channels for CLIP based image conditioning.
clip_seq (`int`, *optional*, defaults to 4):
effnet_in_channels (`int`, *optional*, defaults to `None`):
Number of input channels for effnet conditioning.
pixel_mapper_in_channels (`int`, defaults to `None`):
Number of input channels for pixel mapper conditioning.
kernel_size (`int`, *optional*, defaults to 3):
Kernel size to use in the block convolutional layers.
dropout (Tuple[float], *optional*, defaults to (0.1, 0.1)):
Dropout to use per block.
self_attn (Union[bool, Tuple[bool]]):
Tuple of booleans that determine whether to use self attention in a block or not.
timestep_conditioning_type (Tuple[str], defaults to ("sca", "crp")):
Timestep conditioning type.
switch_level (Optional[Tuple[bool]], *optional*, defaults to `None`):
Tuple that indicates whether upsampling or downsampling should be applied in a block
"""
super().__init__()
if len(block_out_channels) != len(down_num_layers_per_block):
raise ValueError(
f"Number of elements in `down_num_layers_per_block` must match the length of `block_out_channels`: {len(block_out_channels)}"
)
elif len(block_out_channels) != len(up_num_layers_per_block):
raise ValueError(
f"Number of elements in `up_num_layers_per_block` must match the length of `block_out_channels`: {len(block_out_channels)}"
)
elif len(block_out_channels) != len(down_blocks_repeat_mappers):
raise ValueError(
f"Number of elements in `down_blocks_repeat_mappers` must match the length of `block_out_channels`: {len(block_out_channels)}"
)
elif len(block_out_channels) != len(up_blocks_repeat_mappers):
raise ValueError(
f"Number of elements in `up_blocks_repeat_mappers` must match the length of `block_out_channels`: {len(block_out_channels)}"
)
elif len(block_out_channels) != len(block_types_per_layer):
raise ValueError(
f"Number of elements in `block_types_per_layer` must match the length of `block_out_channels`: {len(block_out_channels)}"
)
if isinstance(dropout, float):
dropout = (dropout,) * len(block_out_channels)
if isinstance(self_attn, bool):
self_attn = (self_attn,) * len(block_out_channels)
# CONDITIONING
if effnet_in_channels is not None:
self.effnet_mapper = nn.Sequential(
nn.Conv2d(effnet_in_channels, block_out_channels[0] * 4, kernel_size=1),
nn.GELU(),
nn.Conv2d(block_out_channels[0] * 4, block_out_channels[0], kernel_size=1),
SDCascadeLayerNorm(block_out_channels[0], elementwise_affine=False, eps=1e-6),
)
if pixel_mapper_in_channels is not None:
self.pixels_mapper = nn.Sequential(
nn.Conv2d(pixel_mapper_in_channels, block_out_channels[0] * 4, kernel_size=1),
nn.GELU(),
nn.Conv2d(block_out_channels[0] * 4, block_out_channels[0], kernel_size=1),
SDCascadeLayerNorm(block_out_channels[0], elementwise_affine=False, eps=1e-6),
)
self.clip_txt_pooled_mapper = nn.Linear(clip_text_pooled_in_channels, conditioning_dim * clip_seq)
if clip_text_in_channels is not None:
self.clip_txt_mapper = nn.Linear(clip_text_in_channels, conditioning_dim)
if clip_image_in_channels is not None:
self.clip_img_mapper = nn.Linear(clip_image_in_channels, conditioning_dim * clip_seq)
self.clip_norm = nn.LayerNorm(conditioning_dim, elementwise_affine=False, eps=1e-6)
self.embedding = nn.Sequential(
nn.PixelUnshuffle(patch_size),
nn.Conv2d(in_channels * (patch_size**2), block_out_channels[0], kernel_size=1),
SDCascadeLayerNorm(block_out_channels[0], elementwise_affine=False, eps=1e-6),
)
def get_block(block_type, in_channels, nhead, c_skip=0, dropout=0, self_attn=True):
if block_type == "SDCascadeResBlock":
return SDCascadeResBlock(in_channels, c_skip, kernel_size=kernel_size, dropout=dropout)
elif block_type == "SDCascadeAttnBlock":
return SDCascadeAttnBlock(in_channels, conditioning_dim, nhead, self_attn=self_attn, dropout=dropout)
elif block_type == "SDCascadeTimestepBlock":
return SDCascadeTimestepBlock(
in_channels, timestep_ratio_embedding_dim, conds=timestep_conditioning_type
)
else:
raise ValueError(f"Block type {block_type} not supported")
# BLOCKS
# -- down blocks
self.down_blocks = nn.ModuleList()
self.down_downscalers = nn.ModuleList()
self.down_repeat_mappers = nn.ModuleList()
for i in range(len(block_out_channels)):
if i > 0:
self.down_downscalers.append(
nn.Sequential(
SDCascadeLayerNorm(block_out_channels[i - 1], elementwise_affine=False, eps=1e-6),
UpDownBlock2d(
block_out_channels[i - 1], block_out_channels[i], mode="down", enabled=switch_level[i - 1]
)
if switch_level is not None
else nn.Conv2d(block_out_channels[i - 1], block_out_channels[i], kernel_size=2, stride=2),
)
)
else:
self.down_downscalers.append(nn.Identity())
down_block = nn.ModuleList()
for _ in range(down_num_layers_per_block[i]):
for block_type in block_types_per_layer[i]:
block = get_block(
block_type,
block_out_channels[i],
num_attention_heads[i],
dropout=dropout[i],
self_attn=self_attn[i],
)
down_block.append(block)
self.down_blocks.append(down_block)
if down_blocks_repeat_mappers is not None:
block_repeat_mappers = nn.ModuleList()
for _ in range(down_blocks_repeat_mappers[i] - 1):
block_repeat_mappers.append(nn.Conv2d(block_out_channels[i], block_out_channels[i], kernel_size=1))
self.down_repeat_mappers.append(block_repeat_mappers)
# -- up blocks
self.up_blocks = nn.ModuleList()
self.up_upscalers = nn.ModuleList()
self.up_repeat_mappers = nn.ModuleList()
for i in reversed(range(len(block_out_channels))):
if i > 0:
self.up_upscalers.append(
nn.Sequential(
SDCascadeLayerNorm(block_out_channels[i], elementwise_affine=False, eps=1e-6),
UpDownBlock2d(
block_out_channels[i], block_out_channels[i - 1], mode="up", enabled=switch_level[i - 1]
)
if switch_level is not None
else nn.ConvTranspose2d(
block_out_channels[i], block_out_channels[i - 1], kernel_size=2, stride=2
),
)
)
else:
self.up_upscalers.append(nn.Identity())
up_block = nn.ModuleList()
for j in range(up_num_layers_per_block[::-1][i]):
for k, block_type in enumerate(block_types_per_layer[i]):
c_skip = block_out_channels[i] if i < len(block_out_channels) - 1 and j == k == 0 else 0
block = get_block(
block_type,
block_out_channels[i],
num_attention_heads[i],
c_skip=c_skip,
dropout=dropout[i],
self_attn=self_attn[i],
)
up_block.append(block)
self.up_blocks.append(up_block)
if up_blocks_repeat_mappers is not None:
block_repeat_mappers = nn.ModuleList()
for _ in range(up_blocks_repeat_mappers[::-1][i] - 1):
block_repeat_mappers.append(nn.Conv2d(block_out_channels[i], block_out_channels[i], kernel_size=1))
self.up_repeat_mappers.append(block_repeat_mappers)
# OUTPUT
self.clf = nn.Sequential(
SDCascadeLayerNorm(block_out_channels[0], elementwise_affine=False, eps=1e-6),
nn.Conv2d(block_out_channels[0], out_channels * (patch_size**2), kernel_size=1),
nn.PixelShuffle(patch_size),
)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, value=False):
self.gradient_checkpointing = value
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
torch.nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
nn.init.normal_(self.clip_txt_pooled_mapper.weight, std=0.02)
nn.init.normal_(self.clip_txt_mapper.weight, std=0.02) if hasattr(self, "clip_txt_mapper") else None
nn.init.normal_(self.clip_img_mapper.weight, std=0.02) if hasattr(self, "clip_img_mapper") else None
if hasattr(self, "effnet_mapper"):
nn.init.normal_(self.effnet_mapper[0].weight, std=0.02) # conditionings
nn.init.normal_(self.effnet_mapper[2].weight, std=0.02) # conditionings
if hasattr(self, "pixels_mapper"):
nn.init.normal_(self.pixels_mapper[0].weight, std=0.02) # conditionings
nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings
torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
nn.init.constant_(self.clf[1].weight, 0) # outputs
# blocks
for level_block in self.down_blocks + self.up_blocks:
for block in level_block:
if isinstance(block, SDCascadeResBlock):
block.channelwise[-1].weight.data *= np.sqrt(1 / sum(self.config.blocks[0]))
elif isinstance(block, SDCascadeTimestepBlock):
nn.init.constant_(block.mapper.weight, 0)
def get_timestep_ratio_embedding(self, timestep_ratio, max_positions=10000):
r = timestep_ratio * max_positions
half_dim = self.config.timestep_ratio_embedding_dim // 2
emb = math.log(max_positions) / (half_dim - 1)
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
emb = r[:, None] * emb[None, :]
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
if self.config.timestep_ratio_embedding_dim % 2 == 1: # zero pad
emb = nn.functional.pad(emb, (0, 1), mode="constant")
return emb.to(dtype=r.dtype)
def get_clip_embeddings(self, clip_txt_pooled, clip_txt=None, clip_img=None):
if len(clip_txt_pooled.shape) == 2:
clip_txt_pool = clip_txt_pooled.unsqueeze(1)
clip_txt_pool = self.clip_txt_pooled_mapper(clip_txt_pooled).view(
clip_txt_pooled.size(0), clip_txt_pooled.size(1) * self.config.clip_seq, -1
)
if clip_txt is not None and clip_img is not None:
clip_txt = self.clip_txt_mapper(clip_txt)
if len(clip_img.shape) == 2:
clip_img = clip_img.unsqueeze(1)
clip_img = self.clip_img_mapper(clip_img).view(
clip_img.size(0), clip_img.size(1) * self.config.clip_seq, -1
)
clip = torch.cat([clip_txt, clip_txt_pool, clip_img], dim=1)
else:
clip = clip_txt_pool
return self.clip_norm(clip)
def _down_encode(self, x, r_embed, clip):
level_outputs = []
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
for down_block, downscaler, repmap in block_group:
x = downscaler(x)
for i in range(len(repmap) + 1):
for block in down_block:
if isinstance(block, SDCascadeResBlock):
x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, use_reentrant=False)
elif isinstance(block, SDCascadeAttnBlock):
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block), x, clip, use_reentrant=False
)
elif isinstance(block, SDCascadeTimestepBlock):
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block), x, r_embed, use_reentrant=False
)
else:
x = x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block), use_reentrant=False
)
if i < len(repmap):
x = repmap[i](x)
level_outputs.insert(0, x)
else:
for down_block, downscaler, repmap in block_group:
x = downscaler(x)
for i in range(len(repmap) + 1):
for block in down_block:
if isinstance(block, SDCascadeResBlock):
x = block(x)
elif isinstance(block, SDCascadeAttnBlock):
x = block(x, clip)
elif isinstance(block, SDCascadeTimestepBlock):
x = block(x, r_embed)
else:
x = block(x)
if i < len(repmap):
x = repmap[i](x)
level_outputs.insert(0, x)
return level_outputs
def _up_decode(self, level_outputs, r_embed, clip):
x = level_outputs[0]
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
for i, (up_block, upscaler, repmap) in enumerate(block_group):
for j in range(len(repmap) + 1):
for k, block in enumerate(up_block):
if isinstance(block, SDCascadeResBlock):
skip = level_outputs[i] if k == 0 and i > 0 else None
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
orig_type = x.dtype
x = torch.nn.functional.interpolate(
x.float(), skip.shape[-2:], mode="bilinear", align_corners=True
)
x = x.to(orig_type)
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block), x, skip, use_reentrant=False
)
elif isinstance(block, SDCascadeAttnBlock):
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block), x, clip, use_reentrant=False
)
elif isinstance(block, SDCascadeTimestepBlock):
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block), x, r_embed, use_reentrant=False
)
else:
x = torch.utils.checkpoint.checkpoint(create_custom_forward(block), x, use_reentrant=False)
if j < len(repmap):
x = repmap[j](x)
x = upscaler(x)
else:
for i, (up_block, upscaler, repmap) in enumerate(block_group):
for j in range(len(repmap) + 1):
for k, block in enumerate(up_block):
if isinstance(block, SDCascadeResBlock):
skip = level_outputs[i] if k == 0 and i > 0 else None
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
orig_type = x.dtype
x = torch.nn.functional.interpolate(
x.float(), skip.shape[-2:], mode="bilinear", align_corners=True
)
x = x.to(orig_type)
x = block(x, skip)
elif isinstance(block, SDCascadeAttnBlock):
x = block(x, clip)
elif isinstance(block, SDCascadeTimestepBlock):
x = block(x, r_embed)
else:
x = block(x)
if j < len(repmap):
x = repmap[j](x)
x = upscaler(x)
return x
def forward(
self,
sample,
timestep_ratio,
clip_text_pooled,
clip_text=None,
clip_img=None,
effnet=None,
pixels=None,
sca=None,
crp=None,
return_dict=True,
):
if pixels is None:
pixels = sample.new_zeros(sample.size(0), 3, 8, 8)
# Process the conditioning embeddings
timestep_ratio_embed = self.get_timestep_ratio_embedding(timestep_ratio)
for c in self.config.timestep_conditioning_type:
if c == "sca":
cond = sca
elif c == "crp":
cond = crp
else:
cond = None
t_cond = cond or torch.zeros_like(timestep_ratio)
timestep_ratio_embed = torch.cat([timestep_ratio_embed, self.get_timestep_ratio_embedding(t_cond)], dim=1)
clip = self.get_clip_embeddings(clip_txt_pooled=clip_text_pooled, clip_txt=clip_text, clip_img=clip_img)
# Model Blocks
x = self.embedding(sample)
if hasattr(self, "effnet_mapper") and effnet is not None:
x = x + self.effnet_mapper(
nn.functional.interpolate(effnet, size=x.shape[-2:], mode="bilinear", align_corners=True)
)
if hasattr(self, "pixels_mapper"):
x = x + nn.functional.interpolate(
self.pixels_mapper(pixels), size=x.shape[-2:], mode="bilinear", align_corners=True
)
level_outputs = self._down_encode(x, timestep_ratio_embed, clip)
x = self._up_decode(level_outputs, timestep_ratio_embed, clip)
sample = self.clf(x)
if not return_dict:
return (sample,)
return StableCascadeUNetOutput(sample=sample)