File size: 10,305 Bytes
521472f
 
 
7518724
521472f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7518724
521472f
 
 
 
 
 
 
 
 
 
7518724
521472f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4fde17
521472f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76d9c6d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import spaces
import os
import warnings
from huggingface_hub import snapshot_download
import gradio as gr
from glob import glob
import shutil
import torch
import numpy as np
from PIL import Image
from einops import rearrange
import argparse

# Suppress warnings
warnings.simplefilter('ignore', category=UserWarning)
warnings.simplefilter('ignore', category=FutureWarning)
warnings.simplefilter('ignore', category=DeprecationWarning)

def download_models():
    # Create weights directory if it doesn't exist
    os.makedirs("weights", exist_ok=True)
    os.makedirs("weights/hunyuanDiT", exist_ok=True)

    # Download Hunyuan3D-1 model
    try:
        snapshot_download(
            repo_id="tencent/Hunyuan3D-1",
            local_dir="./weights",
            resume_download=True
        )
        print("Successfully downloaded Hunyuan3D-1 model")
    except Exception as e:
        print(f"Error downloading Hunyuan3D-1: {e}")

    # Download HunyuanDiT model
    try:
        snapshot_download(
            repo_id="Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled",
            local_dir="./weights/hunyuanDiT",
            resume_download=True
        )
        print("Successfully downloaded HunyuanDiT model")
    except Exception as e:
        print(f"Error downloading HunyuanDiT: {e}")

# Download models before starting the app
download_models()

# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("--use_lite", default=False, action="store_true")
parser.add_argument("--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str)
parser.add_argument("--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str)
parser.add_argument("--text2image_path", default="weights/hunyuanDiT", type=str)
parser.add_argument("--save_memory", default=False, action="store_true")
parser.add_argument("--device", default="cuda:0", type=str)
args = parser.parse_args()

# Constants
CONST_PORT = 8080
CONST_MAX_QUEUE = 1
CONST_SERVER = '0.0.0.0'

CONST_HEADER = '''
<h2><a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'>
<b>Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation</b></a></h2>
'''

# Helper functions
def get_example_img_list():
    print('Loading example img list ...')
    return sorted(glob('./demos/example_*.png'))

def get_example_txt_list():
    print('Loading example txt list ...')
    txt_list = []
    for line in open('./demos/example_list.txt'):
        txt_list.append(line.strip())
    return txt_list

example_is = get_example_img_list()
example_ts = get_example_txt_list()

# Import required workers
from infer import seed_everything, save_gif
from infer import Text2Image, Removebg, Image2Views, Views2Mesh, GifRenderer

# Initialize workers
worker_xbg = Removebg()
print(f"loading {args.text2image_path}")
worker_t2i = Text2Image(
    pretrain=args.text2image_path,
    device=args.device,
    save_memory=args.save_memory
)
worker_i2v = Image2Views(
    use_lite=args.use_lite,
    device=args.device
)
worker_v23 = Views2Mesh(
    args.mv23d_cfg_path,
    args.mv23d_ckt_path,
    use_lite=args.use_lite,
    device=args.device
)
worker_gif = GifRenderer(args.device)

# Pipeline stages
@spaces.GPU
def stage_0_t2i(text, image, seed, step):
    os.makedirs('./outputs/app_output', exist_ok=True)
    exists = set(int(_) for _ in os.listdir('./outputs/app_output') if not _.startswith("."))
    cur_id = min(set(range(30)) - exists) if len(exists) < 30 else 0
    
    if os.path.exists(f"./outputs/app_output/{(cur_id + 1) % 30}"):
        shutil.rmtree(f"./outputs/app_output/{(cur_id + 1) % 30}")
    save_folder = f'./outputs/app_output/{cur_id}'
    os.makedirs(save_folder, exist_ok=True)

    dst = save_folder + '/img.png'
    
    if not text:
        if image is None:
            return dst, save_folder
        image.save(dst)
        return dst, save_folder
        
    image = worker_t2i(text, seed, step)
    image.save(dst)
    dst = worker_xbg(image, save_folder)
    return dst, save_folder
@spaces.GPU
def stage_1_xbg(image, save_folder):
    if isinstance(image, str):
        image = Image.open(image)
    dst = save_folder + '/img_nobg.png'
    rgba = worker_xbg(image)
    rgba.save(dst)
    return dst
@spaces.GPU
def stage_2_i2v(image, seed, step, save_folder):
    if isinstance(image, str):
        image = Image.open(image)
    gif_dst = save_folder + '/views.gif'
    res_img, pils = worker_i2v(image, seed, step)
    save_gif(pils, gif_dst)
    views_img, cond_img = res_img[0], res_img[1]
    img_array = np.asarray(views_img, dtype=np.uint8)
    show_img = rearrange(img_array, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
    show_img = show_img[worker_i2v.order, ...]
    show_img = rearrange(show_img, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
    show_img = Image.fromarray(show_img)
    return views_img, cond_img, show_img
@spaces.GPU
def stage_3_v23(views_pil, cond_pil, seed, save_folder, target_face_count=30000, 
                do_texture_mapping=True, do_render=True):
    do_texture_mapping = do_texture_mapping or do_render
    obj_dst = save_folder + '/mesh_with_colors.obj'
    glb_dst = save_folder + '/mesh.glb'
    worker_v23(
        views_pil,
        cond_pil,
        seed=seed,
        save_folder=save_folder,
        target_face_count=target_face_count,
        do_texture_mapping=do_texture_mapping
    )
    return obj_dst, glb_dst
@spaces.GPU
def stage_4_gif(obj_dst, save_folder, do_render_gif=True):
    if not do_render_gif:
        return None
    gif_dst = save_folder + '/output.gif'
    worker_gif(
        save_folder + '/mesh.obj',
        gif_dst_path=gif_dst
    )
    return gif_dst

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown(CONST_HEADER)
    
    with gr.Row(variant="panel"):
        with gr.Column(scale=2):
            with gr.Tab("Text to 3D"):
                with gr.Column():
                    text = gr.TextArea('cat', 
                                     lines=1, max_lines=10, label='Input text')
                    with gr.Row():
                        textgen_seed = gr.Number(value=0, label="T2I seed", precision=0)
                        textgen_step = gr.Number(value=25, label="T2I step", precision=0)
                        textgen_SEED = gr.Number(value=0, label="Gen seed", precision=0)
                        textgen_STEP = gr.Number(value=50, label="Gen step", precision=0)
                        textgen_max_faces = gr.Number(value=90000, label="max number of faces", precision=0)
                    
                    with gr.Row():
                        textgen_do_texture_mapping = gr.Checkbox(label="texture mapping", value=False)
                        textgen_do_render_gif = gr.Checkbox(label="Render gif", value=False)
                        textgen_submit = gr.Button("Generate", variant="primary")

                    gr.Examples(examples=example_ts, inputs=[text], label="Txt examples")

            with gr.Tab("Image to 3D"):
                with gr.Column():
                    input_image = gr.Image(label="Input image", width=256, height=256, 
                                         type="pil", image_mode="RGBA", sources="upload")
                    with gr.Row():
                        imggen_SEED = gr.Number(value=0, label="Gen seed", precision=0)
                        imggen_STEP = gr.Number(value=50, label="Gen step", precision=0)
                        imggen_max_faces = gr.Number(value=90000, label="max number of faces", precision=0)

                    with gr.Row():
                        imggen_do_texture_mapping = gr.Checkbox(label="texture mapping", value=False)
                        imggen_do_render_gif = gr.Checkbox(label="Render gif", value=False)
                        imggen_submit = gr.Button("Generate", variant="primary")
                    
                    gr.Examples(examples=example_is, inputs=[input_image], label="Img examples")

        with gr.Column(scale=3):
            with gr.Tab("rembg image"):
                rem_bg_image = gr.Image(label="No background image", width=256, height=256, 
                                      type="pil", image_mode="RGBA")
            
            with gr.Tab("Multi views"):
                result_image = gr.Image(label="Multi views", type="pil")
            with gr.Tab("Obj"):
                result_3dobj = gr.Model3D(label="Output obj")
            with gr.Tab("Glb"):
                result_3dglb = gr.Model3D(label="Output glb")
            with gr.Tab("GIF"):
                result_gif = gr.Image(label="Rendered GIF")

    # States
    none = gr.State(None)
    save_folder = gr.State()
    cond_image = gr.State()
    views_image = gr.State()
    text_image = gr.State()
    
    # Event handlers
    textgen_submit.click(
        fn=stage_0_t2i,
        inputs=[text, none, textgen_seed, textgen_step],
        outputs=[rem_bg_image, save_folder],
    ).success(
        fn=stage_2_i2v,
        inputs=[rem_bg_image, textgen_SEED, textgen_STEP, save_folder],
        outputs=[views_image, cond_image, result_image],
    ).success(
        fn=stage_3_v23,
        inputs=[views_image, cond_image, textgen_SEED, save_folder, textgen_max_faces, 
                textgen_do_texture_mapping, textgen_do_render_gif],
        outputs=[result_3dobj, result_3dglb],
    ).success(
        fn=stage_4_gif,
        inputs=[result_3dglb, save_folder, textgen_do_render_gif],
        outputs=[result_gif],
    )

    imggen_submit.click(
        fn=stage_0_t2i,
        inputs=[none, input_image, textgen_seed, textgen_step],
        outputs=[text_image, save_folder],
    ).success(
        fn=stage_1_xbg,
        inputs=[text_image, save_folder],
        outputs=[rem_bg_image],
    ).success(
        fn=stage_2_i2v,
        inputs=[rem_bg_image, imggen_SEED, imggen_STEP, save_folder],
        outputs=[views_image, cond_image, result_image],
    ).success(
        fn=stage_3_v23,
        inputs=[views_image, cond_image, imggen_SEED, save_folder, imggen_max_faces, 
                imggen_do_texture_mapping, imggen_do_render_gif],
        outputs=[result_3dobj, result_3dglb],
    ).success(
        fn=stage_4_gif,
        inputs=[result_3dglb, save_folder, imggen_do_render_gif],
        outputs=[result_gif],
    )

demo.queue()
demo.launch()