File size: 32,611 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
# Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver and https://github.com/NVlabs/edm

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils.torch_utils import randn_tensor
from .scheduling_utils import SchedulerMixin, SchedulerOutput


class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
    """

    Implements DPMSolverMultistepScheduler in EDM formulation as presented in Karras et al. 2022 [1].

    `EDMDPMSolverMultistepScheduler` is a fast dedicated high-order solver for diffusion ODEs.



    [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."

    https://arxiv.org/abs/2206.00364



    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic

    methods the library implements for all schedulers such as loading and saving.



    Args:

        sigma_min (`float`, *optional*, defaults to 0.002):

            Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the EDM paper [1]; a reasonable

            range is [0, 10].

        sigma_max (`float`, *optional*, defaults to 80.0):

            Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the EDM paper [1]; a reasonable

            range is [0.2, 80.0].

        sigma_data (`float`, *optional*, defaults to 0.5):

            The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1].

        sigma_schedule (`str`, *optional*, defaults to `karras`):

            Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper

            (https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was

            incorporated in this model: https://huggingface.co./stabilityai/cosxl.

        num_train_timesteps (`int`, defaults to 1000):

            The number of diffusion steps to train the model.

        solver_order (`int`, defaults to 2):

            The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided

            sampling, and `solver_order=3` for unconditional sampling.

        prediction_type (`str`, defaults to `epsilon`, *optional*):

            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),

            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen

            Video](https://imagen.research.google/video/paper.pdf) paper).

        thresholding (`bool`, defaults to `False`):

            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such

            as Stable Diffusion.

        dynamic_thresholding_ratio (`float`, defaults to 0.995):

            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.

        sample_max_value (`float`, defaults to 1.0):

            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and

            `algorithm_type="dpmsolver++"`.

        algorithm_type (`str`, defaults to `dpmsolver++`):

            Algorithm type for the solver; can be `dpmsolver++` or `sde-dpmsolver++`. The `dpmsolver++` type implements

            the algorithms in the [DPMSolver++](https://huggingface.co./papers/2211.01095) paper. It is recommended to

            use `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.

        solver_type (`str`, defaults to `midpoint`):

            Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the

            sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.

        lower_order_final (`bool`, defaults to `True`):

            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can

            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.

        euler_at_final (`bool`, defaults to `False`):

            Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail

            richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference

            steps, but sometimes may result in blurring.

        final_sigmas_type (`str`, defaults to `"zero"`):

            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final

            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.

    """

    _compatibles = []
    order = 1

    @register_to_config
    def __init__(

        self,

        sigma_min: float = 0.002,

        sigma_max: float = 80.0,

        sigma_data: float = 0.5,

        sigma_schedule: str = "karras",

        num_train_timesteps: int = 1000,

        prediction_type: str = "epsilon",

        rho: float = 7.0,

        solver_order: int = 2,

        thresholding: bool = False,

        dynamic_thresholding_ratio: float = 0.995,

        sample_max_value: float = 1.0,

        algorithm_type: str = "dpmsolver++",

        solver_type: str = "midpoint",

        lower_order_final: bool = True,

        euler_at_final: bool = False,

        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"

    ):
        # settings for DPM-Solver
        if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"]:
            if algorithm_type == "deis":
                self.register_to_config(algorithm_type="dpmsolver++")
            else:
                raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")

        if solver_type not in ["midpoint", "heun"]:
            if solver_type in ["logrho", "bh1", "bh2"]:
                self.register_to_config(solver_type="midpoint")
            else:
                raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")

        if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
            raise ValueError(
                f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead."
            )

        ramp = torch.linspace(0, 1, num_train_timesteps)
        if sigma_schedule == "karras":
            sigmas = self._compute_karras_sigmas(ramp)
        elif sigma_schedule == "exponential":
            sigmas = self._compute_exponential_sigmas(ramp)

        self.timesteps = self.precondition_noise(sigmas)

        self.sigmas = self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])

        # setable values
        self.num_inference_steps = None
        self.model_outputs = [None] * solver_order
        self.lower_order_nums = 0
        self._step_index = None
        self._begin_index = None
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication

    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        return (self.config.sigma_max**2 + 1) ** 0.5

    @property
    def step_index(self):
        """

        The index counter for current timestep. It will increase 1 after each scheduler step.

        """
        return self._step_index

    @property
    def begin_index(self):
        """

        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.

        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """

        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.



        Args:

            begin_index (`int`):

                The begin index for the scheduler.

        """
        self._begin_index = begin_index

    # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_inputs
    def precondition_inputs(self, sample, sigma):
        c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
        scaled_sample = sample * c_in
        return scaled_sample

    # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_noise
    def precondition_noise(self, sigma):
        if not isinstance(sigma, torch.Tensor):
            sigma = torch.tensor([sigma])

        c_noise = 0.25 * torch.log(sigma)

        return c_noise

    # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_outputs
    def precondition_outputs(self, sample, model_output, sigma):
        sigma_data = self.config.sigma_data
        c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)

        if self.config.prediction_type == "epsilon":
            c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        elif self.config.prediction_type == "v_prediction":
            c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        else:
            raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")

        denoised = c_skip * sample + c_out * model_output

        return denoised

    # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.scale_model_input
    def scale_model_input(

        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]

    ) -> torch.FloatTensor:
        """

        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the

        current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.



        Args:

            sample (`torch.FloatTensor`):

                The input sample.

            timestep (`int`, *optional*):

                The current timestep in the diffusion chain.



        Returns:

            `torch.FloatTensor`:

                A scaled input sample.

        """
        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]
        sample = self.precondition_inputs(sample, sigma)

        self.is_scale_input_called = True
        return sample

    def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
        """

        Sets the discrete timesteps used for the diffusion chain (to be run before inference).



        Args:

            num_inference_steps (`int`):

                The number of diffusion steps used when generating samples with a pre-trained model.

            device (`str` or `torch.device`, *optional*):

                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.

        """

        self.num_inference_steps = num_inference_steps

        ramp = np.linspace(0, 1, self.num_inference_steps)
        if self.config.sigma_schedule == "karras":
            sigmas = self._compute_karras_sigmas(ramp)
        elif self.config.sigma_schedule == "exponential":
            sigmas = self._compute_exponential_sigmas(ramp)

        sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
        self.timesteps = self.precondition_noise(sigmas)

        if self.config.final_sigmas_type == "sigma_min":
            sigma_last = self.config.sigma_min
        elif self.config.final_sigmas_type == "zero":
            sigma_last = 0
        else:
            raise ValueError(
                f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
            )

        self.sigmas = torch.cat([sigmas, torch.tensor([sigma_last], dtype=torch.float32, device=device)])

        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0

        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
        self._begin_index = None
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication

    # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_karras_sigmas
    def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.FloatTensor:
        """Constructs the noise schedule of Karras et al. (2022)."""
        sigma_min = sigma_min or self.config.sigma_min
        sigma_max = sigma_max or self.config.sigma_max

        rho = self.config.rho
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho

        return sigmas

    # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas
    def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.FloatTensor:
        """Implementation closely follows k-diffusion.



        https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26

        """
        sigma_min = sigma_min or self.config.sigma_min
        sigma_max = sigma_max or self.config.sigma_max
        sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
        return sigmas

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
        """

        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the

        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by

        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing

        pixels from saturation at each step. We find that dynamic thresholding results in significantly better

        photorealism as well as better image-text alignment, especially when using very large guidance weights."



        https://arxiv.org/abs/2205.11487

        """
        dtype = sample.dtype
        batch_size, channels, *remaining_dims = sample.shape

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, *remaining_dims)
        sample = sample.to(dtype)

        return sample

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
        log_sigma = np.log(np.maximum(sigma, 1e-10))

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    def _sigma_to_alpha_sigma_t(self, sigma):
        alpha_t = torch.tensor(1)  # Inputs are pre-scaled before going into unet, so alpha_t = 1
        sigma_t = sigma

        return alpha_t, sigma_t

    def convert_model_output(

        self,

        model_output: torch.FloatTensor,

        sample: torch.FloatTensor = None,

    ) -> torch.FloatTensor:
        """

        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is

        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an

        integral of the data prediction model.



        <Tip>



        The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise

        prediction and data prediction models.



        </Tip>



        Args:

            model_output (`torch.FloatTensor`):

                The direct output from the learned diffusion model.

            sample (`torch.FloatTensor`):

                A current instance of a sample created by the diffusion process.



        Returns:

            `torch.FloatTensor`:

                The converted model output.

        """
        sigma = self.sigmas[self.step_index]
        x0_pred = self.precondition_outputs(sample, model_output, sigma)

        if self.config.thresholding:
            x0_pred = self._threshold_sample(x0_pred)

        return x0_pred

    def dpm_solver_first_order_update(

        self,

        model_output: torch.FloatTensor,

        sample: torch.FloatTensor = None,

        noise: Optional[torch.FloatTensor] = None,

    ) -> torch.FloatTensor:
        """

        One step for the first-order DPMSolver (equivalent to DDIM).



        Args:

            model_output (`torch.FloatTensor`):

                The direct output from the learned diffusion model.

            sample (`torch.FloatTensor`):

                A current instance of a sample created by the diffusion process.



        Returns:

            `torch.FloatTensor`:

                The sample tensor at the previous timestep.

        """
        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)

        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            x_t = (
                (sigma_t / sigma_s * torch.exp(-h)) * sample
                + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
                + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
            )

        return x_t

    def multistep_dpm_solver_second_order_update(

        self,

        model_output_list: List[torch.FloatTensor],

        sample: torch.FloatTensor = None,

        noise: Optional[torch.FloatTensor] = None,

    ) -> torch.FloatTensor:
        """

        One step for the second-order multistep DPMSolver.



        Args:

            model_output_list (`List[torch.FloatTensor]`):

                The direct outputs from learned diffusion model at current and latter timesteps.

            sample (`torch.FloatTensor`):

                A current instance of a sample created by the diffusion process.



        Returns:

            `torch.FloatTensor`:

                The sample tensor at the previous timestep.

        """
        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)

        m0, m1 = model_output_list[-1], model_output_list[-2]

        h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m0, (1.0 / r0) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2211.01095 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                )
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )

        return x_t

    def multistep_dpm_solver_third_order_update(

        self,

        model_output_list: List[torch.FloatTensor],

        sample: torch.FloatTensor = None,

    ) -> torch.FloatTensor:
        """

        One step for the third-order multistep DPMSolver.



        Args:

            model_output_list (`List[torch.FloatTensor]`):

                The direct outputs from learned diffusion model at current and latter timesteps.

            sample (`torch.FloatTensor`):

                A current instance of a sample created by diffusion process.



        Returns:

            `torch.FloatTensor`:

                The sample tensor at the previous timestep.

        """
        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
        lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)

        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

        h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m0
        D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
        D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
        D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            x_t = (
                (sigma_t / sigma_s0) * sample
                - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
            )

        return x_t

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        index_candidates = (schedule_timesteps == timestep).nonzero()

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """

        Initialize the step_index counter for the scheduler.

        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index

    def step(

        self,

        model_output: torch.FloatTensor,

        timestep: int,

        sample: torch.FloatTensor,

        generator=None,

        return_dict: bool = True,

    ) -> Union[SchedulerOutput, Tuple]:
        """

        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with

        the multistep DPMSolver.



        Args:

            model_output (`torch.FloatTensor`):

                The direct output from learned diffusion model.

            timestep (`int`):

                The current discrete timestep in the diffusion chain.

            sample (`torch.FloatTensor`):

                A current instance of a sample created by the diffusion process.

            generator (`torch.Generator`, *optional*):

                A random number generator.

            return_dict (`bool`):

                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.



        Returns:

            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:

                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a

                tuple is returned where the first element is the sample tensor.



        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        if self.step_index is None:
            self._init_step_index(timestep)

        # Improve numerical stability for small number of steps
        lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
            self.config.euler_at_final
            or (self.config.lower_order_final and len(self.timesteps) < 15)
            or self.config.final_sigmas_type == "zero"
        )
        lower_order_second = (
            (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
        )

        model_output = self.convert_model_output(model_output, sample=sample)
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

        if self.config.algorithm_type == "sde-dpmsolver++":
            noise = randn_tensor(
                model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
            )
        else:
            noise = None

        if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
            prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
        elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
            prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
        else:
            prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample)

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

        # upon completion increase step index by one
        self._step_index += 1

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
    def add_noise(

        self,

        original_samples: torch.FloatTensor,

        noise: torch.FloatTensor,

        timesteps: torch.FloatTensor,

    ) -> torch.FloatTensor:
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)

        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
        else:
            # add noise is called before first denoising step to create initial latent(img2img)
            step_indices = [self.begin_index] * timesteps.shape[0]

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps