File size: 17,065 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for BLIP."""

from typing import Dict, List, Optional, Union

import numpy as np
import torch
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from transformers.image_transforms import convert_to_rgb, resize, to_channel_dimension_format
from transformers.image_utils import (
    OPENAI_CLIP_MEAN,
    OPENAI_CLIP_STD,
    ChannelDimension,
    ImageInput,
    PILImageResampling,
    infer_channel_dimension_format,
    is_scaled_image,
    make_list_of_images,
    to_numpy_array,
    valid_images,
)
from transformers.utils import TensorType, is_vision_available, logging

from diffusers.utils import numpy_to_pil


if is_vision_available():
    import PIL.Image


logger = logging.get_logger(__name__)


# We needed some extra functions on top of the ones in transformers.image_processing_utils.BaseImageProcessor, namely center crop
# Copy-pasted from transformers.models.blip.image_processing_blip.BlipImageProcessor
class BlipImageProcessor(BaseImageProcessor):
    r"""

    Constructs a BLIP image processor.



    Args:

        do_resize (`bool`, *optional*, defaults to `True`):

            Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the

            `do_resize` parameter in the `preprocess` method.

        size (`dict`, *optional*, defaults to `{"height": 384, "width": 384}`):

            Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`

            method.

        resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):

            Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be

            overridden by the `resample` parameter in the `preprocess` method.

        do_rescale (`bool`, *optional*, defaults to `True`):

            Wwhether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the

            `do_rescale` parameter in the `preprocess` method.

        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):

            Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be

            overridden by the `rescale_factor` parameter in the `preprocess` method.

        do_normalize (`bool`, *optional*, defaults to `True`):

            Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`

            method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.

        image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):

            Mean to use if normalizing the image. This is a float or list of floats the length of the number of

            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be

            overridden by the `image_mean` parameter in the `preprocess` method.

        image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):

            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the

            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.

            Can be overridden by the `image_std` parameter in the `preprocess` method.

        do_convert_rgb (`bool`, *optional*, defaults to `True`):

            Whether to convert the image to RGB.

    """

    model_input_names = ["pixel_values"]

    def __init__(

        self,

        do_resize: bool = True,

        size: Dict[str, int] = None,

        resample: PILImageResampling = PILImageResampling.BICUBIC,

        do_rescale: bool = True,

        rescale_factor: Union[int, float] = 1 / 255,

        do_normalize: bool = True,

        image_mean: Optional[Union[float, List[float]]] = None,

        image_std: Optional[Union[float, List[float]]] = None,

        do_convert_rgb: bool = True,

        do_center_crop: bool = True,

        **kwargs,

    ) -> None:
        super().__init__(**kwargs)
        size = size if size is not None else {"height": 224, "width": 224}
        size = get_size_dict(size, default_to_square=True)

        self.do_resize = do_resize
        self.size = size
        self.resample = resample
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_normalize = do_normalize
        self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
        self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
        self.do_convert_rgb = do_convert_rgb
        self.do_center_crop = do_center_crop

    # Copy-pasted from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
    def resize(

        self,

        image: np.ndarray,

        size: Dict[str, int],

        resample: PILImageResampling = PILImageResampling.BICUBIC,

        data_format: Optional[Union[str, ChannelDimension]] = None,

        input_data_format: Optional[Union[str, ChannelDimension]] = None,

        **kwargs,

    ) -> np.ndarray:
        """

        Resize an image to `(size["height"], size["width"])`.



        Args:

            image (`np.ndarray`):

                Image to resize.

            size (`Dict[str, int]`):

                Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.

            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):

                `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.

            data_format (`ChannelDimension` or `str`, *optional*):

                The channel dimension format for the output image. If unset, the channel dimension format of the input

                image is used. Can be one of:

                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.

                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.

                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.

            input_data_format (`ChannelDimension` or `str`, *optional*):

                The channel dimension format for the input image. If unset, the channel dimension format is inferred

                from the input image. Can be one of:

                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.

                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.

                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.



        Returns:

            `np.ndarray`: The resized image.

        """
        size = get_size_dict(size)
        if "height" not in size or "width" not in size:
            raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
        output_size = (size["height"], size["width"])
        return resize(
            image,
            size=output_size,
            resample=resample,
            data_format=data_format,
            input_data_format=input_data_format,
            **kwargs,
        )

    def preprocess(

        self,

        images: ImageInput,

        do_resize: Optional[bool] = None,

        size: Optional[Dict[str, int]] = None,

        resample: PILImageResampling = None,

        do_rescale: Optional[bool] = None,

        do_center_crop: Optional[bool] = None,

        rescale_factor: Optional[float] = None,

        do_normalize: Optional[bool] = None,

        image_mean: Optional[Union[float, List[float]]] = None,

        image_std: Optional[Union[float, List[float]]] = None,

        return_tensors: Optional[Union[str, TensorType]] = None,

        do_convert_rgb: bool = None,

        data_format: ChannelDimension = ChannelDimension.FIRST,

        input_data_format: Optional[Union[str, ChannelDimension]] = None,

        **kwargs,

    ) -> PIL.Image.Image:
        """

        Preprocess an image or batch of images.



        Args:

            images (`ImageInput`):

                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If

                passing in images with pixel values between 0 and 1, set `do_rescale=False`.

            do_resize (`bool`, *optional*, defaults to `self.do_resize`):

                Whether to resize the image.

            size (`Dict[str, int]`, *optional*, defaults to `self.size`):

                Controls the size of the image after `resize`. The shortest edge of the image is resized to

                `size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image

                is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest

                edge equal to `int(size["shortest_edge"] * (1333 / 800))`.

            resample (`PILImageResampling`, *optional*, defaults to `self.resample`):

                Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`.

            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):

                Whether to rescale the image values between [0 - 1].

            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):

                Rescale factor to rescale the image by if `do_rescale` is set to `True`.

            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):

                Whether to normalize the image.

            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):

                Image mean to normalize the image by if `do_normalize` is set to `True`.

            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):

                Image standard deviation to normalize the image by if `do_normalize` is set to `True`.

            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):

                Whether to convert the image to RGB.

            return_tensors (`str` or `TensorType`, *optional*):

                The type of tensors to return. Can be one of:

                    - Unset: Return a list of `np.ndarray`.

                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.

                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.

                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.

                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.

            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):

                The channel dimension format for the output image. Can be one of:

                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.

                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.

                - Unset: Use the channel dimension format of the input image.

            input_data_format (`ChannelDimension` or `str`, *optional*):

                The channel dimension format for the input image. If unset, the channel dimension format is inferred

                from the input image. Can be one of:

                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.

                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.

                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.

        """
        do_resize = do_resize if do_resize is not None else self.do_resize
        resample = resample if resample is not None else self.resample
        do_rescale = do_rescale if do_rescale is not None else self.do_rescale
        rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
        do_normalize = do_normalize if do_normalize is not None else self.do_normalize
        image_mean = image_mean if image_mean is not None else self.image_mean
        image_std = image_std if image_std is not None else self.image_std
        do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
        do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop

        size = size if size is not None else self.size
        size = get_size_dict(size, default_to_square=False)
        images = make_list_of_images(images)

        if not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )

        if do_resize and size is None or resample is None:
            raise ValueError("Size and resample must be specified if do_resize is True.")

        if do_rescale and rescale_factor is None:
            raise ValueError("Rescale factor must be specified if do_rescale is True.")

        if do_normalize and (image_mean is None or image_std is None):
            raise ValueError("Image mean and std must be specified if do_normalize is True.")

        # PIL RGBA images are converted to RGB
        if do_convert_rgb:
            images = [convert_to_rgb(image) for image in images]

        # All transformations expect numpy arrays.
        images = [to_numpy_array(image) for image in images]

        if is_scaled_image(images[0]) and do_rescale:
            logger.warning_once(
                "It looks like you are trying to rescale already rescaled images. If the input"
                " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
            )
        if input_data_format is None:
            # We assume that all images have the same channel dimension format.
            input_data_format = infer_channel_dimension_format(images[0])

        if do_resize:
            images = [
                self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
                for image in images
            ]

        if do_rescale:
            images = [
                self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
                for image in images
            ]
        if do_normalize:
            images = [
                self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
                for image in images
            ]
        if do_center_crop:
            images = [self.center_crop(image, size, input_data_format=input_data_format) for image in images]

        images = [
            to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
        ]

        encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
        return encoded_outputs

    # Follows diffusers.VaeImageProcessor.postprocess
    def postprocess(self, sample: torch.FloatTensor, output_type: str = "pil"):
        if output_type not in ["pt", "np", "pil"]:
            raise ValueError(
                f"output_type={output_type} is not supported. Make sure to choose one of ['pt', 'np', or 'pil']"
            )

        # Equivalent to diffusers.VaeImageProcessor.denormalize
        sample = (sample / 2 + 0.5).clamp(0, 1)
        if output_type == "pt":
            return sample

        # Equivalent to diffusers.VaeImageProcessor.pt_to_numpy
        sample = sample.cpu().permute(0, 2, 3, 1).numpy()
        if output_type == "np":
            return sample
        # Output_type must be 'pil'
        sample = numpy_to_pil(sample)
        return sample