File size: 43,313 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.utils.checkpoint

from ...configuration_utils import ConfigMixin, FrozenDict, register_to_config
from ...loaders import UNet2DConditionLoadersMixin
from ...utils import logging
from ..attention_processor import (
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
    Attention,
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
)
from ..embeddings import TimestepEmbedding, Timesteps
from ..modeling_utils import ModelMixin
from ..transformers.transformer_temporal import TransformerTemporalModel
from .unet_2d_blocks import UNetMidBlock2DCrossAttn
from .unet_2d_condition import UNet2DConditionModel
from .unet_3d_blocks import (
    CrossAttnDownBlockMotion,
    CrossAttnUpBlockMotion,
    DownBlockMotion,
    UNetMidBlockCrossAttnMotion,
    UpBlockMotion,
    get_down_block,
    get_up_block,
)
from .unet_3d_condition import UNet3DConditionOutput


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class MotionModules(nn.Module):
    def __init__(

        self,

        in_channels: int,

        layers_per_block: int = 2,

        num_attention_heads: int = 8,

        attention_bias: bool = False,

        cross_attention_dim: Optional[int] = None,

        activation_fn: str = "geglu",

        norm_num_groups: int = 32,

        max_seq_length: int = 32,

    ):
        super().__init__()
        self.motion_modules = nn.ModuleList([])

        for i in range(layers_per_block):
            self.motion_modules.append(
                TransformerTemporalModel(
                    in_channels=in_channels,
                    norm_num_groups=norm_num_groups,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=in_channels // num_attention_heads,
                    positional_embeddings="sinusoidal",
                    num_positional_embeddings=max_seq_length,
                )
            )


class MotionAdapter(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(

        self,

        block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),

        motion_layers_per_block: int = 2,

        motion_mid_block_layers_per_block: int = 1,

        motion_num_attention_heads: int = 8,

        motion_norm_num_groups: int = 32,

        motion_max_seq_length: int = 32,

        use_motion_mid_block: bool = True,

        conv_in_channels: Optional[int] = None,

    ):
        """Container to store AnimateDiff Motion Modules



        Args:

            block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):

            The tuple of output channels for each UNet block.

            motion_layers_per_block (`int`, *optional*, defaults to 2):

                The number of motion layers per UNet block.

            motion_mid_block_layers_per_block (`int`, *optional*, defaults to 1):

                The number of motion layers in the middle UNet block.

            motion_num_attention_heads (`int`, *optional*, defaults to 8):

                The number of heads to use in each attention layer of the motion module.

            motion_norm_num_groups (`int`, *optional*, defaults to 32):

                The number of groups to use in each group normalization layer of the motion module.

            motion_max_seq_length (`int`, *optional*, defaults to 32):

                The maximum sequence length to use in the motion module.

            use_motion_mid_block (`bool`, *optional*, defaults to True):

                Whether to use a motion module in the middle of the UNet.

        """

        super().__init__()
        down_blocks = []
        up_blocks = []

        if conv_in_channels:
            # input
            self.conv_in = nn.Conv2d(conv_in_channels, block_out_channels[0], kernel_size=3, padding=1)
        else:
            self.conv_in = None

        for i, channel in enumerate(block_out_channels):
            output_channel = block_out_channels[i]
            down_blocks.append(
                MotionModules(
                    in_channels=output_channel,
                    norm_num_groups=motion_norm_num_groups,
                    cross_attention_dim=None,
                    activation_fn="geglu",
                    attention_bias=False,
                    num_attention_heads=motion_num_attention_heads,
                    max_seq_length=motion_max_seq_length,
                    layers_per_block=motion_layers_per_block,
                )
            )

        if use_motion_mid_block:
            self.mid_block = MotionModules(
                in_channels=block_out_channels[-1],
                norm_num_groups=motion_norm_num_groups,
                cross_attention_dim=None,
                activation_fn="geglu",
                attention_bias=False,
                num_attention_heads=motion_num_attention_heads,
                layers_per_block=motion_mid_block_layers_per_block,
                max_seq_length=motion_max_seq_length,
            )
        else:
            self.mid_block = None

        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, channel in enumerate(reversed_block_out_channels):
            output_channel = reversed_block_out_channels[i]
            up_blocks.append(
                MotionModules(
                    in_channels=output_channel,
                    norm_num_groups=motion_norm_num_groups,
                    cross_attention_dim=None,
                    activation_fn="geglu",
                    attention_bias=False,
                    num_attention_heads=motion_num_attention_heads,
                    max_seq_length=motion_max_seq_length,
                    layers_per_block=motion_layers_per_block + 1,
                )
            )

        self.down_blocks = nn.ModuleList(down_blocks)
        self.up_blocks = nn.ModuleList(up_blocks)

    def forward(self, sample):
        pass


class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
    r"""

    A modified conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a

    sample shaped output.



    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented

    for all models (such as downloading or saving).

    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(

        self,

        sample_size: Optional[int] = None,

        in_channels: int = 4,

        out_channels: int = 4,

        down_block_types: Tuple[str, ...] = (

            "CrossAttnDownBlockMotion",

            "CrossAttnDownBlockMotion",

            "CrossAttnDownBlockMotion",

            "DownBlockMotion",

        ),

        up_block_types: Tuple[str, ...] = (

            "UpBlockMotion",

            "CrossAttnUpBlockMotion",

            "CrossAttnUpBlockMotion",

            "CrossAttnUpBlockMotion",

        ),

        block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),

        layers_per_block: int = 2,

        downsample_padding: int = 1,

        mid_block_scale_factor: float = 1,

        act_fn: str = "silu",

        norm_num_groups: int = 32,

        norm_eps: float = 1e-5,

        cross_attention_dim: int = 1280,

        use_linear_projection: bool = False,

        num_attention_heads: Union[int, Tuple[int, ...]] = 8,

        motion_max_seq_length: int = 32,

        motion_num_attention_heads: int = 8,

        use_motion_mid_block: int = True,

        encoder_hid_dim: Optional[int] = None,

        encoder_hid_dim_type: Optional[str] = None,

        time_cond_proj_dim: Optional[int] = None,

    ):
        super().__init__()

        self.sample_size = sample_size

        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

        # input
        conv_in_kernel = 3
        conv_out_kernel = 3
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )

        # time
        time_embed_dim = block_out_channels[0] * 4
        self.time_proj = Timesteps(block_out_channels[0], True, 0)
        timestep_input_dim = block_out_channels[0]

        self.time_embedding = TimestepEmbedding(
            timestep_input_dim, time_embed_dim, act_fn=act_fn, cond_proj_dim=time_cond_proj_dim
        )

        if encoder_hid_dim_type is None:
            self.encoder_hid_proj = None

        # class embedding
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
                num_attention_heads=num_attention_heads[i],
                downsample_padding=downsample_padding,
                use_linear_projection=use_linear_projection,
                dual_cross_attention=False,
                temporal_num_attention_heads=motion_num_attention_heads,
                temporal_max_seq_length=motion_max_seq_length,
            )
            self.down_blocks.append(down_block)

        # mid
        if use_motion_mid_block:
            self.mid_block = UNetMidBlockCrossAttnMotion(
                in_channels=block_out_channels[-1],
                temb_channels=time_embed_dim,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                cross_attention_dim=cross_attention_dim,
                num_attention_heads=num_attention_heads[-1],
                resnet_groups=norm_num_groups,
                dual_cross_attention=False,
                use_linear_projection=use_linear_projection,
                temporal_num_attention_heads=motion_num_attention_heads,
                temporal_max_seq_length=motion_max_seq_length,
            )

        else:
            self.mid_block = UNetMidBlock2DCrossAttn(
                in_channels=block_out_channels[-1],
                temb_channels=time_embed_dim,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                cross_attention_dim=cross_attention_dim,
                num_attention_heads=num_attention_heads[-1],
                resnet_groups=norm_num_groups,
                dual_cross_attention=False,
                use_linear_projection=use_linear_projection,
            )

        # count how many layers upsample the images
        self.num_upsamplers = 0

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        reversed_num_attention_heads = list(reversed(num_attention_heads))

        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=time_embed_dim,
                add_upsample=add_upsample,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
                num_attention_heads=reversed_num_attention_heads[i],
                dual_cross_attention=False,
                resolution_idx=i,
                use_linear_projection=use_linear_projection,
                temporal_num_attention_heads=motion_num_attention_heads,
                temporal_max_seq_length=motion_max_seq_length,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
            self.conv_act = nn.SiLU()
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )

    @classmethod
    def from_unet2d(

        cls,

        unet: UNet2DConditionModel,

        motion_adapter: Optional[MotionAdapter] = None,

        load_weights: bool = True,

    ):
        has_motion_adapter = motion_adapter is not None

        if has_motion_adapter:
            motion_adapter.to(device=unet.device)

        # based on https://github.com/guoyww/AnimateDiff/blob/895f3220c06318ea0760131ec70408b466c49333/animatediff/models/unet.py#L459
        config = dict(unet.config)
        config["_class_name"] = cls.__name__

        down_blocks = []
        for down_blocks_type in config["down_block_types"]:
            if "CrossAttn" in down_blocks_type:
                down_blocks.append("CrossAttnDownBlockMotion")
            else:
                down_blocks.append("DownBlockMotion")
        config["down_block_types"] = down_blocks

        up_blocks = []
        for down_blocks_type in config["up_block_types"]:
            if "CrossAttn" in down_blocks_type:
                up_blocks.append("CrossAttnUpBlockMotion")
            else:
                up_blocks.append("UpBlockMotion")

        config["up_block_types"] = up_blocks

        if has_motion_adapter:
            config["motion_num_attention_heads"] = motion_adapter.config["motion_num_attention_heads"]
            config["motion_max_seq_length"] = motion_adapter.config["motion_max_seq_length"]
            config["use_motion_mid_block"] = motion_adapter.config["use_motion_mid_block"]

            # For PIA UNets we need to set the number input channels to 9
            if motion_adapter.config["conv_in_channels"]:
                config["in_channels"] = motion_adapter.config["conv_in_channels"]

        # Need this for backwards compatibility with UNet2DConditionModel checkpoints
        if not config.get("num_attention_heads"):
            config["num_attention_heads"] = config["attention_head_dim"]

        config = FrozenDict(config)
        model = cls.from_config(config)

        if not load_weights:
            return model

        # Logic for loading PIA UNets which allow the first 4 channels to be any UNet2DConditionModel conv_in weight
        # while the last 5 channels must be PIA conv_in weights.
        if has_motion_adapter and motion_adapter.config["conv_in_channels"]:
            model.conv_in = motion_adapter.conv_in
            updated_conv_in_weight = torch.cat(
                [unet.conv_in.weight, motion_adapter.conv_in.weight[:, 4:, :, :]], dim=1
            )
            model.conv_in.load_state_dict({"weight": updated_conv_in_weight, "bias": unet.conv_in.bias})
        else:
            model.conv_in.load_state_dict(unet.conv_in.state_dict())

        model.time_proj.load_state_dict(unet.time_proj.state_dict())
        model.time_embedding.load_state_dict(unet.time_embedding.state_dict())

        for i, down_block in enumerate(unet.down_blocks):
            model.down_blocks[i].resnets.load_state_dict(down_block.resnets.state_dict())
            if hasattr(model.down_blocks[i], "attentions"):
                model.down_blocks[i].attentions.load_state_dict(down_block.attentions.state_dict())
            if model.down_blocks[i].downsamplers:
                model.down_blocks[i].downsamplers.load_state_dict(down_block.downsamplers.state_dict())

        for i, up_block in enumerate(unet.up_blocks):
            model.up_blocks[i].resnets.load_state_dict(up_block.resnets.state_dict())
            if hasattr(model.up_blocks[i], "attentions"):
                model.up_blocks[i].attentions.load_state_dict(up_block.attentions.state_dict())
            if model.up_blocks[i].upsamplers:
                model.up_blocks[i].upsamplers.load_state_dict(up_block.upsamplers.state_dict())

        model.mid_block.resnets.load_state_dict(unet.mid_block.resnets.state_dict())
        model.mid_block.attentions.load_state_dict(unet.mid_block.attentions.state_dict())

        if unet.conv_norm_out is not None:
            model.conv_norm_out.load_state_dict(unet.conv_norm_out.state_dict())
        if unet.conv_act is not None:
            model.conv_act.load_state_dict(unet.conv_act.state_dict())
        model.conv_out.load_state_dict(unet.conv_out.state_dict())

        if has_motion_adapter:
            model.load_motion_modules(motion_adapter)

        # ensure that the Motion UNet is the same dtype as the UNet2DConditionModel
        model.to(unet.dtype)

        return model

    def freeze_unet2d_params(self) -> None:
        """Freeze the weights of just the UNet2DConditionModel, and leave the motion modules

        unfrozen for fine tuning.

        """
        # Freeze everything
        for param in self.parameters():
            param.requires_grad = False

        # Unfreeze Motion Modules
        for down_block in self.down_blocks:
            motion_modules = down_block.motion_modules
            for param in motion_modules.parameters():
                param.requires_grad = True

        for up_block in self.up_blocks:
            motion_modules = up_block.motion_modules
            for param in motion_modules.parameters():
                param.requires_grad = True

        if hasattr(self.mid_block, "motion_modules"):
            motion_modules = self.mid_block.motion_modules
            for param in motion_modules.parameters():
                param.requires_grad = True

    def load_motion_modules(self, motion_adapter: Optional[MotionAdapter]) -> None:
        for i, down_block in enumerate(motion_adapter.down_blocks):
            self.down_blocks[i].motion_modules.load_state_dict(down_block.motion_modules.state_dict())
        for i, up_block in enumerate(motion_adapter.up_blocks):
            self.up_blocks[i].motion_modules.load_state_dict(up_block.motion_modules.state_dict())

        # to support older motion modules that don't have a mid_block
        if hasattr(self.mid_block, "motion_modules"):
            self.mid_block.motion_modules.load_state_dict(motion_adapter.mid_block.motion_modules.state_dict())

    def save_motion_modules(

        self,

        save_directory: str,

        is_main_process: bool = True,

        safe_serialization: bool = True,

        variant: Optional[str] = None,

        push_to_hub: bool = False,

        **kwargs,

    ) -> None:
        state_dict = self.state_dict()

        # Extract all motion modules
        motion_state_dict = {}
        for k, v in state_dict.items():
            if "motion_modules" in k:
                motion_state_dict[k] = v

        adapter = MotionAdapter(
            block_out_channels=self.config["block_out_channels"],
            motion_layers_per_block=self.config["layers_per_block"],
            motion_norm_num_groups=self.config["norm_num_groups"],
            motion_num_attention_heads=self.config["motion_num_attention_heads"],
            motion_max_seq_length=self.config["motion_max_seq_length"],
            use_motion_mid_block=self.config["use_motion_mid_block"],
        )
        adapter.load_state_dict(motion_state_dict)
        adapter.save_pretrained(
            save_directory=save_directory,
            is_main_process=is_main_process,
            safe_serialization=safe_serialization,
            variant=variant,
            push_to_hub=push_to_hub,
            **kwargs,
        )

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""

        Returns:

            `dict` of attention processors: A dictionary containing all attention processors used in the model with

            indexed by its weight name.

        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""

        Sets the attention processor to use to compute attention.



        Parameters:

            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):

                The instantiated processor class or a dictionary of processor classes that will be set as the processor

                for **all** `Attention` layers.



                If `processor` is a dict, the key needs to define the path to the corresponding cross attention

                processor. This is strongly recommended when setting trainable attention processors.



        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
    def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
        """

        Sets the attention processor to use [feed forward

        chunking](https://huggingface.co./blog/reformer#2-chunked-feed-forward-layers).



        Parameters:

            chunk_size (`int`, *optional*):

                The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually

                over each tensor of dim=`dim`.

            dim (`int`, *optional*, defaults to `0`):

                The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)

                or dim=1 (sequence length).

        """
        if dim not in [0, 1]:
            raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")

        # By default chunk size is 1
        chunk_size = chunk_size or 1

        def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.children():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.children():
            fn_recursive_feed_forward(module, chunk_size, dim)

    # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
    def disable_forward_chunking(self) -> None:
        def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.children():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.children():
            fn_recursive_feed_forward(module, None, 0)

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
    def set_default_attn_processor(self) -> None:
        """

        Disables custom attention processors and sets the default attention implementation.

        """
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

        self.set_attn_processor(processor)

    def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
        if isinstance(module, (CrossAttnDownBlockMotion, DownBlockMotion, CrossAttnUpBlockMotion, UpBlockMotion)):
            module.gradient_checkpointing = value

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu
    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float) -> None:
        r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.



        The suffixes after the scaling factors represent the stage blocks where they are being applied.



        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that

        are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.



        Args:

            s1 (`float`):

                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to

                mitigate the "oversmoothing effect" in the enhanced denoising process.

            s2 (`float`):

                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to

                mitigate the "oversmoothing effect" in the enhanced denoising process.

            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.

            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.

        """
        for i, upsample_block in enumerate(self.up_blocks):
            setattr(upsample_block, "s1", s1)
            setattr(upsample_block, "s2", s2)
            setattr(upsample_block, "b1", b1)
            setattr(upsample_block, "b2", b2)

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu
    def disable_freeu(self) -> None:
        """Disables the FreeU mechanism."""
        freeu_keys = {"s1", "s2", "b1", "b2"}
        for i, upsample_block in enumerate(self.up_blocks):
            for k in freeu_keys:
                if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
                    setattr(upsample_block, k, None)

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
    def fuse_qkv_projections(self):
        """

        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)

        are fused. For cross-attention modules, key and value projection matrices are fused.



        <Tip warning={true}>



        This API is 🧪 experimental.



        </Tip>

        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.



        <Tip warning={true}>



        This API is 🧪 experimental.



        </Tip>



        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)

    def forward(

        self,

        sample: torch.FloatTensor,

        timestep: Union[torch.Tensor, float, int],

        encoder_hidden_states: torch.Tensor,

        timestep_cond: Optional[torch.Tensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        cross_attention_kwargs: Optional[Dict[str, Any]] = None,

        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,

        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,

        mid_block_additional_residual: Optional[torch.Tensor] = None,

        return_dict: bool = True,

    ) -> Union[UNet3DConditionOutput, Tuple[torch.Tensor]]:
        r"""

        The [`UNetMotionModel`] forward method.



        Args:

            sample (`torch.FloatTensor`):

                The noisy input tensor with the following shape `(batch, num_frames, channel, height, width`.

            timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.

            encoder_hidden_states (`torch.FloatTensor`):

                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.

            timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):

                Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed

                through the `self.time_embedding` layer to obtain the timestep embeddings.

            attention_mask (`torch.Tensor`, *optional*, defaults to `None`):

                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask

                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large

                negative values to the attention scores corresponding to "discard" tokens.

            cross_attention_kwargs (`dict`, *optional*):

                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under

                `self.processor` in

                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

            down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):

                A tuple of tensors that if specified are added to the residuals of down unet blocks.

            mid_block_additional_residual: (`torch.Tensor`, *optional*):

                A tensor that if specified is added to the residual of the middle unet block.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~models.unet_3d_condition.UNet3DConditionOutput`] instead of a plain

                tuple.



        Returns:

            [`~models.unet_3d_condition.UNet3DConditionOutput`] or `tuple`:

                If `return_dict` is True, an [`~models.unet_3d_condition.UNet3DConditionOutput`] is returned, otherwise

                a `tuple` is returned where the first element is the sample tensor.

        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
            if isinstance(timestep, float):
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        num_frames = sample.shape[2]
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)

        emb = self.time_embedding(t_emb, timestep_cond)
        emb = emb.repeat_interleave(repeats=num_frames, dim=0)
        encoder_hidden_states = encoder_hidden_states.repeat_interleave(repeats=num_frames, dim=0)

        if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )
            image_embeds = added_cond_kwargs.get("image_embeds")
            image_embeds = self.encoder_hid_proj(image_embeds)
            image_embeds = [image_embed.repeat_interleave(repeats=num_frames, dim=0) for image_embed in image_embeds]
            encoder_hidden_states = (encoder_hidden_states, image_embeds)

        # 2. pre-process
        sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:])
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    num_frames=num_frames,
                    cross_attention_kwargs=cross_attention_kwargs,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames)

            down_block_res_samples += res_samples

        if down_block_additional_residuals is not None:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
                new_down_block_res_samples += (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

        # 4. mid
        if self.mid_block is not None:
            # To support older versions of motion modules that don't have a mid_block
            if hasattr(self.mid_block, "motion_modules"):
                sample = self.mid_block(
                    sample,
                    emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    num_frames=num_frames,
                    cross_attention_kwargs=cross_attention_kwargs,
                )
            else:
                sample = self.mid_block(
                    sample,
                    emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                )

        if mid_block_additional_residual is not None:
            sample = sample + mid_block_additional_residual

        # 5. up
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
                    upsample_size=upsample_size,
                    attention_mask=attention_mask,
                    num_frames=num_frames,
                    cross_attention_kwargs=cross_attention_kwargs,
                )
            else:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    upsample_size=upsample_size,
                    num_frames=num_frames,
                )

        # 6. post-process
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)

        sample = self.conv_out(sample)

        # reshape to (batch, channel, framerate, width, height)
        sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4)

        if not return_dict:
            return (sample,)

        return UNet3DConditionOutput(sample=sample)