Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,216 Bytes
0324143 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import argparse
import os
import random
import torch
import yaml
from collections import OrderedDict
from os import path as osp
from basicsr.utils import set_random_seed
from basicsr.utils.dist_util import get_dist_info, init_dist, master_only
def ordered_yaml():
"""Support OrderedDict for yaml.
Returns:
tuple: yaml Loader and Dumper.
"""
try:
from yaml import CDumper as Dumper
from yaml import CLoader as Loader
except ImportError:
from yaml import Dumper, Loader
_mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG
def dict_representer(dumper, data):
return dumper.represent_dict(data.items())
def dict_constructor(loader, node):
return OrderedDict(loader.construct_pairs(node))
Dumper.add_representer(OrderedDict, dict_representer)
Loader.add_constructor(_mapping_tag, dict_constructor)
return Loader, Dumper
def yaml_load(f):
"""Load yaml file or string.
Args:
f (str): File path or a python string.
Returns:
dict: Loaded dict.
"""
if os.path.isfile(f):
with open(f, 'r') as f:
return yaml.load(f, Loader=ordered_yaml()[0])
else:
return yaml.load(f, Loader=ordered_yaml()[0])
def dict2str(opt, indent_level=1):
"""dict to string for printing options.
Args:
opt (dict): Option dict.
indent_level (int): Indent level. Default: 1.
Return:
(str): Option string for printing.
"""
msg = '\n'
for k, v in opt.items():
if isinstance(v, dict):
msg += ' ' * (indent_level * 2) + k + ':['
msg += dict2str(v, indent_level + 1)
msg += ' ' * (indent_level * 2) + ']\n'
else:
msg += ' ' * (indent_level * 2) + k + ': ' + str(v) + '\n'
return msg
def _postprocess_yml_value(value):
# None
if value == '~' or value.lower() == 'none':
return None
# bool
if value.lower() == 'true':
return True
elif value.lower() == 'false':
return False
# !!float number
if value.startswith('!!float'):
return float(value.replace('!!float', ''))
# number
if value.isdigit():
return int(value)
elif value.replace('.', '', 1).isdigit() and value.count('.') < 2:
return float(value)
# list
if value.startswith('['):
return eval(value)
# str
return value
def parse_options(root_path, is_train=True):
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, required=True, help='Path to option YAML file.')
parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher')
parser.add_argument('--auto_resume', action='store_true')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument(
'--force_yml', nargs='+', default=None, help='Force to update yml files. Examples: train:ema_decay=0.999')
args = parser.parse_args()
# parse yml to dict
opt = yaml_load(args.opt)
# distributed settings
if args.launcher == 'none':
opt['dist'] = False
print('Disable distributed.', flush=True)
else:
opt['dist'] = True
if args.launcher == 'slurm' and 'dist_params' in opt:
init_dist(args.launcher, **opt['dist_params'])
else:
init_dist(args.launcher)
opt['rank'], opt['world_size'] = get_dist_info()
# random seed
seed = opt.get('manual_seed')
if seed is None:
seed = random.randint(1, 10000)
opt['manual_seed'] = seed
set_random_seed(seed + opt['rank'])
# force to update yml options
if args.force_yml is not None:
for entry in args.force_yml:
# now do not support creating new keys
keys, value = entry.split('=')
keys, value = keys.strip(), value.strip()
value = _postprocess_yml_value(value)
eval_str = 'opt'
for key in keys.split(':'):
eval_str += f'["{key}"]'
eval_str += '=value'
# using exec function
exec(eval_str)
opt['auto_resume'] = args.auto_resume
opt['is_train'] = is_train
# debug setting
if args.debug and not opt['name'].startswith('debug'):
opt['name'] = 'debug_' + opt['name']
if opt['num_gpu'] == 'auto':
opt['num_gpu'] = torch.cuda.device_count()
# datasets
for phase, dataset in opt['datasets'].items():
# for multiple datasets, e.g., val_1, val_2; test_1, test_2
phase = phase.split('_')[0]
dataset['phase'] = phase
if 'scale' in opt:
dataset['scale'] = opt['scale']
if dataset.get('dataroot_gt') is not None:
dataset['dataroot_gt'] = osp.expanduser(dataset['dataroot_gt'])
if dataset.get('dataroot_lq') is not None:
dataset['dataroot_lq'] = osp.expanduser(dataset['dataroot_lq'])
# paths
for key, val in opt['path'].items():
if (val is not None) and ('resume_state' in key or 'pretrain_network' in key):
opt['path'][key] = osp.expanduser(val)
if is_train:
experiments_root = opt['path'].get('experiments_root')
if experiments_root is None:
experiments_root = osp.join(root_path, 'experiments')
experiments_root = osp.join(experiments_root, opt['name'])
opt['path']['experiments_root'] = experiments_root
opt['path']['models'] = osp.join(experiments_root, 'models')
opt['path']['training_states'] = osp.join(experiments_root, 'training_states')
opt['path']['log'] = experiments_root
opt['path']['visualization'] = osp.join(experiments_root, 'visualization')
# change some options for debug mode
if 'debug' in opt['name']:
if 'val' in opt:
opt['val']['val_freq'] = 8
opt['logger']['print_freq'] = 1
opt['logger']['save_checkpoint_freq'] = 8
else: # test
results_root = opt['path'].get('results_root')
if results_root is None:
results_root = osp.join(root_path, 'results')
results_root = osp.join(results_root, opt['name'])
opt['path']['results_root'] = results_root
opt['path']['log'] = results_root
opt['path']['visualization'] = osp.join(results_root, 'visualization')
return opt, args
@master_only
def copy_opt_file(opt_file, experiments_root):
# copy the yml file to the experiment root
import sys
import time
from shutil import copyfile
cmd = ' '.join(sys.argv)
filename = osp.join(experiments_root, osp.basename(opt_file))
copyfile(opt_file, filename)
with open(filename, 'r+') as f:
lines = f.readlines()
lines.insert(0, f'# GENERATE TIME: {time.asctime()}\n# CMD:\n# {cmd}\n\n')
f.seek(0)
f.writelines(lines)
|