File size: 3,103 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import random
import time
from os import path as osp
from torch.utils import data as data
from torchvision.transforms.functional import normalize

from basicsr.data.transforms import augment
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.registry import DATASET_REGISTRY


@DATASET_REGISTRY.register()
class FFHQDataset(data.Dataset):
    """FFHQ dataset for StyleGAN.



    Args:

        opt (dict): Config for train datasets. It contains the following keys:

            dataroot_gt (str): Data root path for gt.

            io_backend (dict): IO backend type and other kwarg.

            mean (list | tuple): Image mean.

            std (list | tuple): Image std.

            use_hflip (bool): Whether to horizontally flip.



    """

    def __init__(self, opt):
        super(FFHQDataset, self).__init__()
        self.opt = opt
        # file client (io backend)
        self.file_client = None
        self.io_backend_opt = opt['io_backend']

        self.gt_folder = opt['dataroot_gt']
        self.mean = opt['mean']
        self.std = opt['std']

        if self.io_backend_opt['type'] == 'lmdb':
            self.io_backend_opt['db_paths'] = self.gt_folder
            if not self.gt_folder.endswith('.lmdb'):
                raise ValueError("'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}")
            with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
                self.paths = [line.split('.')[0] for line in fin]
        else:
            # FFHQ has 70000 images in total
            self.paths = [osp.join(self.gt_folder, f'{v:08d}.png') for v in range(70000)]

    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)

        # load gt image
        gt_path = self.paths[index]
        # avoid errors caused by high latency in reading files
        retry = 3
        while retry > 0:
            try:
                img_bytes = self.file_client.get(gt_path)
            except Exception as e:
                logger = get_root_logger()
                logger.warning(f'File client error: {e}, remaining retry times: {retry - 1}')
                # change another file to read
                index = random.randint(0, self.__len__())
                gt_path = self.paths[index]
                time.sleep(1)  # sleep 1s for occasional server congestion
            else:
                break
            finally:
                retry -= 1
        img_gt = imfrombytes(img_bytes, float32=True)

        # random horizontal flip
        img_gt = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False)
        # BGR to RGB, HWC to CHW, numpy to tensor
        img_gt = img2tensor(img_gt, bgr2rgb=True, float32=True)
        # normalize
        normalize(img_gt, self.mean, self.std, inplace=True)
        return {'gt': img_gt, 'gt_path': gt_path}

    def __len__(self):
        return len(self.paths)