File size: 24,349 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from math import ceil
from typing import Callable, Dict, List, Optional, Union

import numpy as np
import torch
from transformers import CLIPTextModel, CLIPTokenizer

from ...loaders import LoraLoaderMixin
from ...schedulers import DDPMWuerstchenScheduler
from ...utils import BaseOutput, deprecate, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from .modeling_wuerstchen_prior import WuerstchenPrior


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

DEFAULT_STAGE_C_TIMESTEPS = list(np.linspace(1.0, 2 / 3, 20)) + list(np.linspace(2 / 3, 0.0, 11))[1:]

EXAMPLE_DOC_STRING = """

    Examples:

        ```py

        >>> import torch

        >>> from diffusers import WuerstchenPriorPipeline



        >>> prior_pipe = WuerstchenPriorPipeline.from_pretrained(

        ...     "warp-ai/wuerstchen-prior", torch_dtype=torch.float16

        ... ).to("cuda")



        >>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"

        >>> prior_output = pipe(prompt)

        ```

"""


@dataclass
class WuerstchenPriorPipelineOutput(BaseOutput):
    """

    Output class for WuerstchenPriorPipeline.



    Args:

        image_embeddings (`torch.FloatTensor` or `np.ndarray`)

            Prior image embeddings for text prompt



    """

    image_embeddings: Union[torch.FloatTensor, np.ndarray]


class WuerstchenPriorPipeline(DiffusionPipeline, LoraLoaderMixin):
    """

    Pipeline for generating image prior for Wuerstchen.



    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the

    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)



    The pipeline also inherits the following loading methods:

        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights

        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights



    Args:

        prior ([`Prior`]):

            The canonical unCLIP prior to approximate the image embedding from the text embedding.

        text_encoder ([`CLIPTextModelWithProjection`]):

            Frozen text-encoder.

        tokenizer (`CLIPTokenizer`):

            Tokenizer of class

            [CLIPTokenizer](https://huggingface.co./docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).

        scheduler ([`DDPMWuerstchenScheduler`]):

            A scheduler to be used in combination with `prior` to generate image embedding.

        latent_mean ('float', *optional*, defaults to 42.0):

            Mean value for latent diffusers.

        latent_std ('float', *optional*, defaults to 1.0):

            Standard value for latent diffusers.

        resolution_multiple ('float', *optional*, defaults to 42.67):

            Default resolution for multiple images generated.

    """

    unet_name = "prior"
    text_encoder_name = "text_encoder"
    model_cpu_offload_seq = "text_encoder->prior"
    _callback_tensor_inputs = ["latents", "text_encoder_hidden_states", "negative_prompt_embeds"]

    def __init__(

        self,

        tokenizer: CLIPTokenizer,

        text_encoder: CLIPTextModel,

        prior: WuerstchenPrior,

        scheduler: DDPMWuerstchenScheduler,

        latent_mean: float = 42.0,

        latent_std: float = 1.0,

        resolution_multiple: float = 42.67,

    ) -> None:
        super().__init__()
        self.register_modules(
            tokenizer=tokenizer,
            text_encoder=text_encoder,
            prior=prior,
            scheduler=scheduler,
        )
        self.register_to_config(
            latent_mean=latent_mean, latent_std=latent_std, resolution_multiple=resolution_multiple
        )

    # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
    def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        latents = latents * scheduler.init_noise_sigma
        return latents

    def encode_prompt(

        self,

        device,

        num_images_per_prompt,

        do_classifier_free_guidance,

        prompt=None,

        negative_prompt=None,

        prompt_embeds: Optional[torch.FloatTensor] = None,

        negative_prompt_embeds: Optional[torch.FloatTensor] = None,

    ):
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            # get prompt text embeddings
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            attention_mask = text_inputs.attention_mask

            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )
                text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
                attention_mask = attention_mask[:, : self.tokenizer.model_max_length]

            text_encoder_output = self.text_encoder(
                text_input_ids.to(device), attention_mask=attention_mask.to(device)
            )
            prompt_embeds = text_encoder_output.last_hidden_state

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
        prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)

        if negative_prompt_embeds is None and do_classifier_free_guidance:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            negative_prompt_embeds_text_encoder_output = self.text_encoder(
                uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device)
            )

            negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.last_hidden_state

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]
            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
            # done duplicates

        return prompt_embeds, negative_prompt_embeds

    def check_inputs(

        self,

        prompt,

        negative_prompt,

        num_inference_steps,

        do_classifier_free_guidance,

        prompt_embeds=None,

        negative_prompt_embeds=None,

    ):
        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if not isinstance(num_inference_steps, int):
            raise TypeError(
                f"'num_inference_steps' must be of type 'int', but got {type(num_inference_steps)}\

                           In Case you want to provide explicit timesteps, please use the 'timesteps' argument."
            )

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(

        self,

        prompt: Optional[Union[str, List[str]]] = None,

        height: int = 1024,

        width: int = 1024,

        num_inference_steps: int = 60,

        timesteps: List[float] = None,

        guidance_scale: float = 8.0,

        negative_prompt: Optional[Union[str, List[str]]] = None,

        prompt_embeds: Optional[torch.FloatTensor] = None,

        negative_prompt_embeds: Optional[torch.FloatTensor] = None,

        num_images_per_prompt: Optional[int] = 1,

        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,

        latents: Optional[torch.FloatTensor] = None,

        output_type: Optional[str] = "pt",

        return_dict: bool = True,

        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,

        callback_on_step_end_tensor_inputs: List[str] = ["latents"],

        **kwargs,

    ):
        """

        Function invoked when calling the pipeline for generation.



        Args:

            prompt (`str` or `List[str]`):

                The prompt or prompts to guide the image generation.

            height (`int`, *optional*, defaults to 1024):

                The height in pixels of the generated image.

            width (`int`, *optional*, defaults to 1024):

                The width in pixels of the generated image.

            num_inference_steps (`int`, *optional*, defaults to 60):

                The number of denoising steps. More denoising steps usually lead to a higher quality image at the

                expense of slower inference.

            timesteps (`List[int]`, *optional*):

                Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`

                timesteps are used. Must be in descending order.

            guidance_scale (`float`, *optional*, defaults to 8.0):

                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).

                `decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen

                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting

                `decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely

                linked to the text `prompt`, usually at the expense of lower image quality.

            negative_prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored

                if `decoder_guidance_scale` is less than `1`).

            prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

                provided, text embeddings will be generated from `prompt` input argument.

            negative_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input

                argument.

            num_images_per_prompt (`int`, *optional*, defaults to 1):

                The number of images to generate per prompt.

            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):

                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)

                to make generation deterministic.

            latents (`torch.FloatTensor`, *optional*):

                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image

                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents

                tensor will ge generated by sampling using the supplied random `generator`.

            output_type (`str`, *optional*, defaults to `"pil"`):

                The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`

                (`np.array`) or `"pt"` (`torch.Tensor`).

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.

            callback_on_step_end (`Callable`, *optional*):

                A function that calls at the end of each denoising steps during the inference. The function is called

                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,

                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by

                `callback_on_step_end_tensor_inputs`.

            callback_on_step_end_tensor_inputs (`List`, *optional*):

                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list

                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the

                `._callback_tensor_inputs` attribute of your pipeline class.



        Examples:



        Returns:

            [`~pipelines.WuerstchenPriorPipelineOutput`] or `tuple` [`~pipelines.WuerstchenPriorPipelineOutput`] if

            `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the

            generated image embeddings.

        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        # 0. Define commonly used variables
        device = self._execution_device
        self._guidance_scale = guidance_scale
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # 1. Check inputs. Raise error if not correct
        if prompt is not None and not isinstance(prompt, list):
            if isinstance(prompt, str):
                prompt = [prompt]
            else:
                raise TypeError(f"'prompt' must be of type 'list' or 'str', but got {type(prompt)}.")

        if self.do_classifier_free_guidance:
            if negative_prompt is not None and not isinstance(negative_prompt, list):
                if isinstance(negative_prompt, str):
                    negative_prompt = [negative_prompt]
                else:
                    raise TypeError(
                        f"'negative_prompt' must be of type 'list' or 'str', but got {type(negative_prompt)}."
                    )

        self.check_inputs(
            prompt,
            negative_prompt,
            num_inference_steps,
            self.do_classifier_free_guidance,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )

        # 2. Encode caption
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt=prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )

        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        text_encoder_hidden_states = (
            torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds
        )

        # 3. Determine latent shape of image embeddings
        dtype = text_encoder_hidden_states.dtype
        latent_height = ceil(height / self.config.resolution_multiple)
        latent_width = ceil(width / self.config.resolution_multiple)
        num_channels = self.prior.config.c_in
        effnet_features_shape = (num_images_per_prompt * batch_size, num_channels, latent_height, latent_width)

        # 4. Prepare and set timesteps
        if timesteps is not None:
            self.scheduler.set_timesteps(timesteps=timesteps, device=device)
            timesteps = self.scheduler.timesteps
            num_inference_steps = len(timesteps)
        else:
            self.scheduler.set_timesteps(num_inference_steps, device=device)
            timesteps = self.scheduler.timesteps

        # 5. Prepare latents
        latents = self.prepare_latents(effnet_features_shape, dtype, device, generator, latents, self.scheduler)

        # 6. Run denoising loop
        self._num_timesteps = len(timesteps[:-1])
        for i, t in enumerate(self.progress_bar(timesteps[:-1])):
            ratio = t.expand(latents.size(0)).to(dtype)

            # 7. Denoise image embeddings
            predicted_image_embedding = self.prior(
                torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents,
                r=torch.cat([ratio] * 2) if self.do_classifier_free_guidance else ratio,
                c=text_encoder_hidden_states,
            )

            # 8. Check for classifier free guidance and apply it
            if self.do_classifier_free_guidance:
                predicted_image_embedding_text, predicted_image_embedding_uncond = predicted_image_embedding.chunk(2)
                predicted_image_embedding = torch.lerp(
                    predicted_image_embedding_uncond, predicted_image_embedding_text, self.guidance_scale
                )

            # 9. Renoise latents to next timestep
            latents = self.scheduler.step(
                model_output=predicted_image_embedding,
                timestep=ratio,
                sample=latents,
                generator=generator,
            ).prev_sample

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                text_encoder_hidden_states = callback_outputs.pop(
                    "text_encoder_hidden_states", text_encoder_hidden_states
                )
                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

            if callback is not None and i % callback_steps == 0:
                step_idx = i // getattr(self.scheduler, "order", 1)
                callback(step_idx, t, latents)

        # 10. Denormalize the latents
        latents = latents * self.config.latent_mean - self.config.latent_std

        # Offload all models
        self.maybe_free_model_hooks()

        if output_type == "np":
            latents = latents.cpu().float().numpy()

        if not return_dict:
            return (latents,)

        return WuerstchenPriorPipelineOutput(latents)