File size: 7,127 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright (c) 2022 Dominic Rampas MIT License
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Union

import torch
import torch.nn as nn

from ...configuration_utils import ConfigMixin, register_to_config
from ...models.autoencoders.vae import DecoderOutput, VectorQuantizer
from ...models.modeling_utils import ModelMixin
from ...models.vq_model import VQEncoderOutput
from ...utils.accelerate_utils import apply_forward_hook


class MixingResidualBlock(nn.Module):
    """

    Residual block with mixing used by Paella's VQ-VAE.

    """

    def __init__(self, inp_channels, embed_dim):
        super().__init__()
        # depthwise
        self.norm1 = nn.LayerNorm(inp_channels, elementwise_affine=False, eps=1e-6)
        self.depthwise = nn.Sequential(
            nn.ReplicationPad2d(1), nn.Conv2d(inp_channels, inp_channels, kernel_size=3, groups=inp_channels)
        )

        # channelwise
        self.norm2 = nn.LayerNorm(inp_channels, elementwise_affine=False, eps=1e-6)
        self.channelwise = nn.Sequential(
            nn.Linear(inp_channels, embed_dim), nn.GELU(), nn.Linear(embed_dim, inp_channels)
        )

        self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)

    def forward(self, x):
        mods = self.gammas
        x_temp = self.norm1(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * (1 + mods[0]) + mods[1]
        x = x + self.depthwise(x_temp) * mods[2]
        x_temp = self.norm2(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * (1 + mods[3]) + mods[4]
        x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5]
        return x


class PaellaVQModel(ModelMixin, ConfigMixin):
    r"""VQ-VAE model from Paella model.



    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library

    implements for all the model (such as downloading or saving, etc.)



    Parameters:

        in_channels (int, *optional*, defaults to 3): Number of channels in the input image.

        out_channels (int,  *optional*, defaults to 3): Number of channels in the output.

        up_down_scale_factor (int, *optional*, defaults to 2): Up and Downscale factor of the input image.

        levels  (int, *optional*, defaults to 2): Number of levels in the model.

        bottleneck_blocks (int, *optional*, defaults to 12): Number of bottleneck blocks in the model.

        embed_dim (int, *optional*, defaults to 384): Number of hidden channels in the model.

        latent_channels (int, *optional*, defaults to 4): Number of latent channels in the VQ-VAE model.

        num_vq_embeddings (int, *optional*, defaults to 8192): Number of codebook vectors in the VQ-VAE.

        scale_factor (float, *optional*, defaults to 0.3764): Scaling factor of the latent space.

    """

    @register_to_config
    def __init__(

        self,

        in_channels: int = 3,

        out_channels: int = 3,

        up_down_scale_factor: int = 2,

        levels: int = 2,

        bottleneck_blocks: int = 12,

        embed_dim: int = 384,

        latent_channels: int = 4,

        num_vq_embeddings: int = 8192,

        scale_factor: float = 0.3764,

    ):
        super().__init__()

        c_levels = [embed_dim // (2**i) for i in reversed(range(levels))]
        # Encoder blocks
        self.in_block = nn.Sequential(
            nn.PixelUnshuffle(up_down_scale_factor),
            nn.Conv2d(in_channels * up_down_scale_factor**2, c_levels[0], kernel_size=1),
        )
        down_blocks = []
        for i in range(levels):
            if i > 0:
                down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
            block = MixingResidualBlock(c_levels[i], c_levels[i] * 4)
            down_blocks.append(block)
        down_blocks.append(
            nn.Sequential(
                nn.Conv2d(c_levels[-1], latent_channels, kernel_size=1, bias=False),
                nn.BatchNorm2d(latent_channels),  # then normalize them to have mean 0 and std 1
            )
        )
        self.down_blocks = nn.Sequential(*down_blocks)

        # Vector Quantizer
        self.vquantizer = VectorQuantizer(num_vq_embeddings, vq_embed_dim=latent_channels, legacy=False, beta=0.25)

        # Decoder blocks
        up_blocks = [nn.Sequential(nn.Conv2d(latent_channels, c_levels[-1], kernel_size=1))]
        for i in range(levels):
            for j in range(bottleneck_blocks if i == 0 else 1):
                block = MixingResidualBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4)
                up_blocks.append(block)
            if i < levels - 1:
                up_blocks.append(
                    nn.ConvTranspose2d(
                        c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2, padding=1
                    )
                )
        self.up_blocks = nn.Sequential(*up_blocks)
        self.out_block = nn.Sequential(
            nn.Conv2d(c_levels[0], out_channels * up_down_scale_factor**2, kernel_size=1),
            nn.PixelShuffle(up_down_scale_factor),
        )

    @apply_forward_hook
    def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> VQEncoderOutput:
        h = self.in_block(x)
        h = self.down_blocks(h)

        if not return_dict:
            return (h,)

        return VQEncoderOutput(latents=h)

    @apply_forward_hook
    def decode(

        self, h: torch.FloatTensor, force_not_quantize: bool = True, return_dict: bool = True

    ) -> Union[DecoderOutput, torch.FloatTensor]:
        if not force_not_quantize:
            quant, _, _ = self.vquantizer(h)
        else:
            quant = h

        x = self.up_blocks(quant)
        dec = self.out_block(x)
        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    def forward(self, sample: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
        r"""

        Args:

            sample (`torch.FloatTensor`): Input sample.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.

        """
        x = sample
        h = self.encode(x).latents
        dec = self.decode(h).sample

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)