File size: 14,518 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Callable, Dict, List, Optional, Union

import torch

from ...models import UNet2DConditionModel, VQModel
from ...schedulers import DDPMScheduler
from ...utils import deprecate, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """

    Examples:

        ```py

        >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline

        >>> import torch



        >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")

        >>> pipe_prior.to("cuda")

        >>> prompt = "red cat, 4k photo"

        >>> out = pipe_prior(prompt)

        >>> image_emb = out.image_embeds

        >>> zero_image_emb = out.negative_image_embeds

        >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")

        >>> pipe.to("cuda")

        >>> image = pipe(

        ...     image_embeds=image_emb,

        ...     negative_image_embeds=zero_image_emb,

        ...     height=768,

        ...     width=768,

        ...     num_inference_steps=50,

        ... ).images

        >>> image[0].save("cat.png")

        ```

"""


def downscale_height_and_width(height, width, scale_factor=8):
    new_height = height // scale_factor**2
    if height % scale_factor**2 != 0:
        new_height += 1
    new_width = width // scale_factor**2
    if width % scale_factor**2 != 0:
        new_width += 1
    return new_height * scale_factor, new_width * scale_factor


class KandinskyV22Pipeline(DiffusionPipeline):
    """

    Pipeline for text-to-image generation using Kandinsky



    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the

    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)



    Args:

        scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]):

            A scheduler to be used in combination with `unet` to generate image latents.

        unet ([`UNet2DConditionModel`]):

            Conditional U-Net architecture to denoise the image embedding.

        movq ([`VQModel`]):

            MoVQ Decoder to generate the image from the latents.

    """

    model_cpu_offload_seq = "unet->movq"
    _callback_tensor_inputs = ["latents", "image_embeds", "negative_image_embeds"]

    def __init__(

        self,

        unet: UNet2DConditionModel,

        scheduler: DDPMScheduler,

        movq: VQModel,

    ):
        super().__init__()

        self.register_modules(
            unet=unet,
            scheduler=scheduler,
            movq=movq,
        )
        self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1)

    # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
    def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        latents = latents * scheduler.init_noise_sigma
        return latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(

        self,

        image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],

        negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],

        height: int = 512,

        width: int = 512,

        num_inference_steps: int = 100,

        guidance_scale: float = 4.0,

        num_images_per_prompt: int = 1,

        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,

        latents: Optional[torch.FloatTensor] = None,

        output_type: Optional[str] = "pil",

        return_dict: bool = True,

        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,

        callback_on_step_end_tensor_inputs: List[str] = ["latents"],

        **kwargs,

    ):
        """

        Function invoked when calling the pipeline for generation.



        Args:

            image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):

                The clip image embeddings for text prompt, that will be used to condition the image generation.

            negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):

                The clip image embeddings for negative text prompt, will be used to condition the image generation.

            height (`int`, *optional*, defaults to 512):

                The height in pixels of the generated image.

            width (`int`, *optional*, defaults to 512):

                The width in pixels of the generated image.

            num_inference_steps (`int`, *optional*, defaults to 100):

                The number of denoising steps. More denoising steps usually lead to a higher quality image at the

                expense of slower inference.

            guidance_scale (`float`, *optional*, defaults to 4.0):

                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).

                `guidance_scale` is defined as `w` of equation 2. of [Imagen

                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >

                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,

                usually at the expense of lower image quality.

            num_images_per_prompt (`int`, *optional*, defaults to 1):

                The number of images to generate per prompt.

            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):

                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)

                to make generation deterministic.

            latents (`torch.FloatTensor`, *optional*):

                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image

                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents

                tensor will ge generated by sampling using the supplied random `generator`.

            output_type (`str`, *optional*, defaults to `"pil"`):

                The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`

                (`np.array`) or `"pt"` (`torch.Tensor`).

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.

            callback_on_step_end (`Callable`, *optional*):

                A function that calls at the end of each denoising steps during the inference. The function is called

                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,

                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by

                `callback_on_step_end_tensor_inputs`.

            callback_on_step_end_tensor_inputs (`List`, *optional*):

                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list

                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the

                `._callback_tensor_inputs` attribute of your pipeline class.



        Examples:



        Returns:

            [`~pipelines.ImagePipelineOutput`] or `tuple`

        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        device = self._execution_device

        self._guidance_scale = guidance_scale

        if isinstance(image_embeds, list):
            image_embeds = torch.cat(image_embeds, dim=0)
        batch_size = image_embeds.shape[0] * num_images_per_prompt
        if isinstance(negative_image_embeds, list):
            negative_image_embeds = torch.cat(negative_image_embeds, dim=0)

        if self.do_classifier_free_guidance:
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0)

            image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to(
                dtype=self.unet.dtype, device=device
            )

        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        num_channels_latents = self.unet.config.in_channels

        height, width = downscale_height_and_width(height, width, self.movq_scale_factor)

        # create initial latent
        latents = self.prepare_latents(
            (batch_size, num_channels_latents, height, width),
            image_embeds.dtype,
            device,
            generator,
            latents,
            self.scheduler,
        )

        self._num_timesteps = len(timesteps)
        for i, t in enumerate(self.progress_bar(timesteps)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents

            added_cond_kwargs = {"image_embeds": image_embeds}
            noise_pred = self.unet(
                sample=latent_model_input,
                timestep=t,
                encoder_hidden_states=None,
                added_cond_kwargs=added_cond_kwargs,
                return_dict=False,
            )[0]

            if self.do_classifier_free_guidance:
                noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1)
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                _, variance_pred_text = variance_pred.chunk(2)
                noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
                noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1)

            if not (
                hasattr(self.scheduler.config, "variance_type")
                and self.scheduler.config.variance_type in ["learned", "learned_range"]
            ):
                noise_pred, _ = noise_pred.split(latents.shape[1], dim=1)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(
                noise_pred,
                t,
                latents,
                generator=generator,
            )[0]

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                image_embeds = callback_outputs.pop("image_embeds", image_embeds)
                negative_image_embeds = callback_outputs.pop("negative_image_embeds", negative_image_embeds)

            if callback is not None and i % callback_steps == 0:
                step_idx = i // getattr(self.scheduler, "order", 1)
                callback(step_idx, t, latents)

        if output_type not in ["pt", "np", "pil", "latent"]:
            raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}")

        if not output_type == "latent":
            # post-processing
            image = self.movq.decode(latents, force_not_quantize=True)["sample"]
            if output_type in ["np", "pil"]:
                image = image * 0.5 + 0.5
                image = image.clamp(0, 1)
                image = image.cpu().permute(0, 2, 3, 1).float().numpy()

            if output_type == "pil":
                image = self.numpy_to_pil(image)
        else:
            image = latents

        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)