File size: 6,332 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import torch
from torch import nn as nn
from torch.nn import functional as F

from basicsr.utils.registry import ARCH_REGISTRY
from .arch_util import flow_warp


class BasicModule(nn.Module):
    """Basic module of SPyNet.



    Note that unlike the architecture in spynet_arch.py, the basic module

    here contains batch normalization.

    """

    def __init__(self):
        super(BasicModule, self).__init__()
        self.basic_module = nn.Sequential(
            nn.Conv2d(in_channels=8, out_channels=32, kernel_size=7, stride=1, padding=3, bias=False),
            nn.BatchNorm2d(32), nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, stride=1, padding=3, bias=False),
            nn.BatchNorm2d(64), nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=64, out_channels=32, kernel_size=7, stride=1, padding=3, bias=False),
            nn.BatchNorm2d(32), nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=32, out_channels=16, kernel_size=7, stride=1, padding=3, bias=False),
            nn.BatchNorm2d(16), nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=16, out_channels=2, kernel_size=7, stride=1, padding=3))

    def forward(self, tensor_input):
        """

        Args:

            tensor_input (Tensor): Input tensor with shape (b, 8, h, w).

                8 channels contain:

                [reference image (3), neighbor image (3), initial flow (2)].



        Returns:

            Tensor: Estimated flow with shape (b, 2, h, w)

        """
        return self.basic_module(tensor_input)


class SPyNetTOF(nn.Module):
    """SPyNet architecture for TOF.



    Note that this implementation is specifically for TOFlow. Please use :file:`spynet_arch.py` for general use.

    They differ in the following aspects:



    1. The basic modules here contain BatchNorm.

    2. Normalization and denormalization are not done here, as they are done in TOFlow.



    ``Paper: Optical Flow Estimation using a Spatial Pyramid Network``



    Reference: https://github.com/Coldog2333/pytoflow



    Args:

        load_path (str): Path for pretrained SPyNet. Default: None.

    """

    def __init__(self, load_path=None):
        super(SPyNetTOF, self).__init__()

        self.basic_module = nn.ModuleList([BasicModule() for _ in range(4)])
        if load_path:
            self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params'])

    def forward(self, ref, supp):
        """

        Args:

            ref (Tensor): Reference image with shape of (b, 3, h, w).

            supp: The supporting image to be warped: (b, 3, h, w).



        Returns:

            Tensor: Estimated optical flow: (b, 2, h, w).

        """
        num_batches, _, h, w = ref.size()
        ref = [ref]
        supp = [supp]

        # generate downsampled frames
        for _ in range(3):
            ref.insert(0, F.avg_pool2d(input=ref[0], kernel_size=2, stride=2, count_include_pad=False))
            supp.insert(0, F.avg_pool2d(input=supp[0], kernel_size=2, stride=2, count_include_pad=False))

        # flow computation
        flow = ref[0].new_zeros(num_batches, 2, h // 16, w // 16)
        for i in range(4):
            flow_up = F.interpolate(input=flow, scale_factor=2, mode='bilinear', align_corners=True) * 2.0
            flow = flow_up + self.basic_module[i](
                torch.cat([ref[i], flow_warp(supp[i], flow_up.permute(0, 2, 3, 1)), flow_up], 1))
        return flow


@ARCH_REGISTRY.register()
class TOFlow(nn.Module):
    """PyTorch implementation of TOFlow.



    In TOFlow, the LR frames are pre-upsampled and have the same size with the GT frames.



    ``Paper: Video Enhancement with Task-Oriented Flow``



    Reference: https://github.com/anchen1011/toflow



    Reference: https://github.com/Coldog2333/pytoflow



    Args:

        adapt_official_weights (bool): Whether to adapt the weights translated

            from the official implementation. Set to false if you want to

            train from scratch. Default: False

    """

    def __init__(self, adapt_official_weights=False):
        super(TOFlow, self).__init__()
        self.adapt_official_weights = adapt_official_weights
        self.ref_idx = 0 if adapt_official_weights else 3

        self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
        self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))

        # flow estimation module
        self.spynet = SPyNetTOF()

        # reconstruction module
        self.conv_1 = nn.Conv2d(3 * 7, 64, 9, 1, 4)
        self.conv_2 = nn.Conv2d(64, 64, 9, 1, 4)
        self.conv_3 = nn.Conv2d(64, 64, 1)
        self.conv_4 = nn.Conv2d(64, 3, 1)

        # activation function
        self.relu = nn.ReLU(inplace=True)

    def normalize(self, img):
        return (img - self.mean) / self.std

    def denormalize(self, img):
        return img * self.std + self.mean

    def forward(self, lrs):
        """

        Args:

            lrs: Input lr frames: (b, 7, 3, h, w).



        Returns:

            Tensor: SR frame: (b, 3, h, w).

        """
        # In the official implementation, the 0-th frame is the reference frame
        if self.adapt_official_weights:
            lrs = lrs[:, [3, 0, 1, 2, 4, 5, 6], :, :, :]

        num_batches, num_lrs, _, h, w = lrs.size()

        lrs = self.normalize(lrs.view(-1, 3, h, w))
        lrs = lrs.view(num_batches, num_lrs, 3, h, w)

        lr_ref = lrs[:, self.ref_idx, :, :, :]
        lr_aligned = []
        for i in range(7):  # 7 frames
            if i == self.ref_idx:
                lr_aligned.append(lr_ref)
            else:
                lr_supp = lrs[:, i, :, :, :]
                flow = self.spynet(lr_ref, lr_supp)
                lr_aligned.append(flow_warp(lr_supp, flow.permute(0, 2, 3, 1)))

        # reconstruction
        hr = torch.stack(lr_aligned, dim=1)
        hr = hr.view(num_batches, -1, h, w)
        hr = self.relu(self.conv_1(hr))
        hr = self.relu(self.conv_2(hr))
        hr = self.relu(self.conv_3(hr))
        hr = self.conv_4(hr) + lr_ref

        return self.denormalize(hr)