File size: 2,223 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
from torch import nn as nn

from basicsr.archs.arch_util import ResidualBlockNoBN, Upsample, make_layer
from basicsr.utils.registry import ARCH_REGISTRY


@ARCH_REGISTRY.register()
class EDSR(nn.Module):
    """EDSR network structure.



    Paper: Enhanced Deep Residual Networks for Single Image Super-Resolution.

    Ref git repo: https://github.com/thstkdgus35/EDSR-PyTorch



    Args:

        num_in_ch (int): Channel number of inputs.

        num_out_ch (int): Channel number of outputs.

        num_feat (int): Channel number of intermediate features.

            Default: 64.

        num_block (int): Block number in the trunk network. Default: 16.

        upscale (int): Upsampling factor. Support 2^n and 3.

            Default: 4.

        res_scale (float): Used to scale the residual in residual block.

            Default: 1.

        img_range (float): Image range. Default: 255.

        rgb_mean (tuple[float]): Image mean in RGB orders.

            Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset.

    """

    def __init__(self,

                 num_in_ch,

                 num_out_ch,

                 num_feat=64,

                 num_block=16,

                 upscale=4,

                 res_scale=1,

                 img_range=255.,

                 rgb_mean=(0.4488, 0.4371, 0.4040)):
        super(EDSR, self).__init__()

        self.img_range = img_range
        self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)

        self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
        self.body = make_layer(ResidualBlockNoBN, num_block, num_feat=num_feat, res_scale=res_scale, pytorch_init=True)
        self.conv_after_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.upsample = Upsample(upscale, num_feat)
        self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)

    def forward(self, x):
        self.mean = self.mean.type_as(x)

        x = (x - self.mean) * self.img_range
        x = self.conv_first(x)
        res = self.conv_after_body(self.body(x))
        res += x

        x = self.conv_last(self.upsample(res))
        x = x / self.img_range + self.mean

        return x