File size: 31,512 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
import inspect
from typing import Callable, Dict, List, Optional, Union

import numpy as np
import PIL
import PIL.Image
import torch
from transformers import T5EncoderModel, T5Tokenizer

from ...loaders import LoraLoaderMixin
from ...models import Kandinsky3UNet, VQModel
from ...schedulers import DDPMScheduler
from ...utils import (
    deprecate,
    logging,
    replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """

    Examples:

        ```py

        >>> from diffusers import AutoPipelineForImage2Image

        >>> from diffusers.utils import load_image

        >>> import torch



        >>> pipe = AutoPipelineForImage2Image.from_pretrained(

        ...     "kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16

        ... )

        >>> pipe.enable_model_cpu_offload()



        >>> prompt = "A painting of the inside of a subway train with tiny raccoons."

        >>> image = load_image(

        ...     "https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/t2i.png"

        ... )



        >>> generator = torch.Generator(device="cpu").manual_seed(0)

        >>> image = pipe(prompt, image=image, strength=0.75, num_inference_steps=25, generator=generator).images[0]

        ```

"""


def downscale_height_and_width(height, width, scale_factor=8):
    new_height = height // scale_factor**2
    if height % scale_factor**2 != 0:
        new_height += 1
    new_width = width // scale_factor**2
    if width % scale_factor**2 != 0:
        new_width += 1
    return new_height * scale_factor, new_width * scale_factor


def prepare_image(pil_image):
    arr = np.array(pil_image.convert("RGB"))
    arr = arr.astype(np.float32) / 127.5 - 1
    arr = np.transpose(arr, [2, 0, 1])
    image = torch.from_numpy(arr).unsqueeze(0)
    return image


class Kandinsky3Img2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
    model_cpu_offload_seq = "text_encoder->movq->unet->movq"
    _callback_tensor_inputs = [
        "latents",
        "prompt_embeds",
        "negative_prompt_embeds",
        "negative_attention_mask",
        "attention_mask",
    ]

    def __init__(

        self,

        tokenizer: T5Tokenizer,

        text_encoder: T5EncoderModel,

        unet: Kandinsky3UNet,

        scheduler: DDPMScheduler,

        movq: VQModel,

    ):
        super().__init__()

        self.register_modules(
            tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, movq=movq
        )

    def get_timesteps(self, num_inference_steps, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start:]

        return timesteps, num_inference_steps - t_start

    def _process_embeds(self, embeddings, attention_mask, cut_context):
        # return embeddings, attention_mask
        if cut_context:
            embeddings[attention_mask == 0] = torch.zeros_like(embeddings[attention_mask == 0])
            max_seq_length = attention_mask.sum(-1).max() + 1
            embeddings = embeddings[:, :max_seq_length]
            attention_mask = attention_mask[:, :max_seq_length]
        return embeddings, attention_mask

    @torch.no_grad()
    def encode_prompt(

        self,

        prompt,

        do_classifier_free_guidance=True,

        num_images_per_prompt=1,

        device=None,

        negative_prompt=None,

        prompt_embeds: Optional[torch.FloatTensor] = None,

        negative_prompt_embeds: Optional[torch.FloatTensor] = None,

        _cut_context=False,

        attention_mask: Optional[torch.FloatTensor] = None,

        negative_attention_mask: Optional[torch.FloatTensor] = None,

    ):
        r"""

        Encodes the prompt into text encoder hidden states.



        Args:

             prompt (`str` or `List[str]`, *optional*):

                prompt to be encoded

            device: (`torch.device`, *optional*):

                torch device to place the resulting embeddings on

            num_images_per_prompt (`int`, *optional*, defaults to 1):

                number of images that should be generated per prompt

            do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):

                whether to use classifier free guidance or not

            negative_prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts not to guide the image generation. If not defined, one has to pass

                `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.

                Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).

            prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

                provided, text embeddings will be generated from `prompt` input argument.

            negative_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input

                argument.

            attention_mask (`torch.FloatTensor`, *optional*):

                Pre-generated attention mask. Must provide if passing `prompt_embeds` directly.

            negative_attention_mask (`torch.FloatTensor`, *optional*):

                Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly.

        """
        if prompt is not None and negative_prompt is not None:
            if type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )

        if device is None:
            device = self._execution_device

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        max_length = 128

        if prompt_embeds is None:
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids.to(device)
            attention_mask = text_inputs.attention_mask.to(device)
            prompt_embeds = self.text_encoder(
                text_input_ids,
                attention_mask=attention_mask,
            )
            prompt_embeds = prompt_embeds[0]
            prompt_embeds, attention_mask = self._process_embeds(prompt_embeds, attention_mask, _cut_context)
            prompt_embeds = prompt_embeds * attention_mask.unsqueeze(2)

        if self.text_encoder is not None:
            dtype = self.text_encoder.dtype
        else:
            dtype = None

        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
        attention_mask = attention_mask.repeat(num_images_per_prompt, 1)
        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]

            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt
            if negative_prompt is not None:
                uncond_input = self.tokenizer(
                    uncond_tokens,
                    padding="max_length",
                    max_length=128,
                    truncation=True,
                    return_attention_mask=True,
                    return_tensors="pt",
                )
                text_input_ids = uncond_input.input_ids.to(device)
                negative_attention_mask = uncond_input.attention_mask.to(device)

                negative_prompt_embeds = self.text_encoder(
                    text_input_ids,
                    attention_mask=negative_attention_mask,
                )
                negative_prompt_embeds = negative_prompt_embeds[0]
                negative_prompt_embeds = negative_prompt_embeds[:, : prompt_embeds.shape[1]]
                negative_attention_mask = negative_attention_mask[:, : prompt_embeds.shape[1]]
                negative_prompt_embeds = negative_prompt_embeds * negative_attention_mask.unsqueeze(2)

            else:
                negative_prompt_embeds = torch.zeros_like(prompt_embeds)
                negative_attention_mask = torch.zeros_like(attention_mask)

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
            if negative_prompt_embeds.shape != prompt_embeds.shape:
                negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
                negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
                negative_attention_mask = negative_attention_mask.repeat(num_images_per_prompt, 1)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
        else:
            negative_prompt_embeds = None
            negative_attention_mask = None
        return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask

    def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
        if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
            raise ValueError(
                f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
            )

        image = image.to(device=device, dtype=dtype)

        batch_size = batch_size * num_images_per_prompt

        if image.shape[1] == 4:
            init_latents = image

        else:
            if isinstance(generator, list) and len(generator) != batch_size:
                raise ValueError(
                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                )

            elif isinstance(generator, list):
                init_latents = [
                    self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
                ]
                init_latents = torch.cat(init_latents, dim=0)
            else:
                init_latents = self.movq.encode(image).latent_dist.sample(generator)

            init_latents = self.movq.config.scaling_factor * init_latents

        init_latents = torch.cat([init_latents], dim=0)

        shape = init_latents.shape
        noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)

        # get latents
        init_latents = self.scheduler.add_noise(init_latents, noise, timestep)

        latents = init_latents

        return latents

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(

        self,

        prompt,

        callback_steps,

        negative_prompt=None,

        prompt_embeds=None,

        negative_prompt_embeds=None,

        callback_on_step_end_tensor_inputs=None,

        attention_mask=None,

        negative_attention_mask=None,

    ):
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if negative_prompt_embeds is not None and negative_attention_mask is None:
            raise ValueError("Please provide `negative_attention_mask` along with `negative_prompt_embeds`")

        if negative_prompt_embeds is not None and negative_attention_mask is not None:
            if negative_prompt_embeds.shape[:2] != negative_attention_mask.shape:
                raise ValueError(
                    "`negative_prompt_embeds` and `negative_attention_mask` must have the same batch_size and token length when passed directly, but"
                    f" got: `negative_prompt_embeds` {negative_prompt_embeds.shape[:2]} != `negative_attention_mask`"
                    f" {negative_attention_mask.shape}."
                )

        if prompt_embeds is not None and attention_mask is None:
            raise ValueError("Please provide `attention_mask` along with `prompt_embeds`")

        if prompt_embeds is not None and attention_mask is not None:
            if prompt_embeds.shape[:2] != attention_mask.shape:
                raise ValueError(
                    "`prompt_embeds` and `attention_mask` must have the same batch_size and token length when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape[:2]} != `attention_mask`"
                    f" {attention_mask.shape}."
                )

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(

        self,

        prompt: Union[str, List[str]] = None,

        image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] = None,

        strength: float = 0.3,

        num_inference_steps: int = 25,

        guidance_scale: float = 3.0,

        negative_prompt: Optional[Union[str, List[str]]] = None,

        num_images_per_prompt: Optional[int] = 1,

        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,

        prompt_embeds: Optional[torch.FloatTensor] = None,

        negative_prompt_embeds: Optional[torch.FloatTensor] = None,

        attention_mask: Optional[torch.FloatTensor] = None,

        negative_attention_mask: Optional[torch.FloatTensor] = None,

        output_type: Optional[str] = "pil",

        return_dict: bool = True,

        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,

        callback_on_step_end_tensor_inputs: List[str] = ["latents"],

        **kwargs,

    ):
        """

        Function invoked when calling the pipeline for generation.



        Args:

            prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.

                instead.

            image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):

                `Image`, or tensor representing an image batch, that will be used as the starting point for the

                process.

            strength (`float`, *optional*, defaults to 0.8):

                Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a

                starting point and more noise is added the higher the `strength`. The number of denoising steps depends

                on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising

                process runs for the full number of iterations specified in `num_inference_steps`. A value of 1

                essentially ignores `image`.

            num_inference_steps (`int`, *optional*, defaults to 50):

                The number of denoising steps. More denoising steps usually lead to a higher quality image at the

                expense of slower inference.

            guidance_scale (`float`, *optional*, defaults to 3.0):

                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).

                `guidance_scale` is defined as `w` of equation 2. of [Imagen

                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >

                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,

                usually at the expense of lower image quality.

            negative_prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts not to guide the image generation. If not defined, one has to pass

                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is

                less than `1`).

            num_images_per_prompt (`int`, *optional*, defaults to 1):

                The number of images to generate per prompt.

            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):

                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)

                to make generation deterministic.

            prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

                provided, text embeddings will be generated from `prompt` input argument.

            negative_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input

                argument.

            attention_mask (`torch.FloatTensor`, *optional*):

                Pre-generated attention mask. Must provide if passing `prompt_embeds` directly.

            negative_attention_mask (`torch.FloatTensor`, *optional*):

                Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly.

            output_type (`str`, *optional*, defaults to `"pil"`):

                The output format of the generate image. Choose between

                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.

            callback_on_step_end (`Callable`, *optional*):

                A function that calls at the end of each denoising steps during the inference. The function is called

                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,

                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by

                `callback_on_step_end_tensor_inputs`.

            callback_on_step_end_tensor_inputs (`List`, *optional*):

                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list

                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the

                `._callback_tensor_inputs` attribute of your pipeline class.



        Examples:



        Returns:

            [`~pipelines.ImagePipelineOutput`] or `tuple`



        """
        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        cut_context = True
        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            callback_on_step_end_tensor_inputs,
            attention_mask,
            negative_attention_mask,
        )

        self._guidance_scale = guidance_scale

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # 3. Encode input prompt
        prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask = self.encode_prompt(
            prompt,
            self.do_classifier_free_guidance,
            num_images_per_prompt=num_images_per_prompt,
            device=device,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            _cut_context=cut_context,
            attention_mask=attention_mask,
            negative_attention_mask=negative_attention_mask,
        )

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
            attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool()
        if not isinstance(image, list):
            image = [image]
        if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image):
            raise ValueError(
                f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support  PIL image and pytorch tensor"
            )

        image = torch.cat([prepare_image(i) for i in image], dim=0)
        image = image.to(dtype=prompt_embeds.dtype, device=device)
        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
        # 5. Prepare latents
        latents = self.movq.encode(image)["latents"]
        latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
        latents = self.prepare_latents(
            latents, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
        )
        if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None:
            self.text_encoder_offload_hook.offload()

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    encoder_attention_mask=attention_mask,
                )[0]
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)

                    noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(
                    noise_pred,
                    t,
                    latents,
                    generator=generator,
                ).prev_sample

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                    attention_mask = callback_outputs.pop("attention_mask", attention_mask)
                    negative_attention_mask = callback_outputs.pop("negative_attention_mask", negative_attention_mask)

                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

            # post-processing
            if output_type not in ["pt", "np", "pil", "latent"]:
                raise ValueError(
                    f"Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}"
                )
            if not output_type == "latent":
                image = self.movq.decode(latents, force_not_quantize=True)["sample"]

                if output_type in ["np", "pil"]:
                    image = image * 0.5 + 0.5
                    image = image.clamp(0, 1)
                    image = image.cpu().permute(0, 2, 3, 1).float().numpy()

                if output_type == "pil":
                    image = self.numpy_to_pil(image)
            else:
                image = latents

            self.maybe_free_model_hooks()

            if not return_dict:
                return (image,)

            return ImagePipelineOutput(images=image)