Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,406 Bytes
0324143 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
from typing import Callable, Dict, List, Optional, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from packaging import version
from PIL import Image
from ... import __version__
from ...models import UNet2DConditionModel, VQModel
from ...schedulers import DDPMScheduler
from ...utils import deprecate, logging
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> from diffusers import KandinskyV22InpaintPipeline, KandinskyV22PriorPipeline
>>> from diffusers.utils import load_image
>>> import torch
>>> import numpy as np
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
... )
>>> pipe_prior.to("cuda")
>>> prompt = "a hat"
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)
>>> pipe = KandinskyV22InpaintPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> init_image = load_image(
... "https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main"
... "/kandinsky/cat.png"
... )
>>> mask = np.zeros((768, 768), dtype=np.float32)
>>> mask[:250, 250:-250] = 1
>>> out = pipe(
... image=init_image,
... mask_image=mask,
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... height=768,
... width=768,
... num_inference_steps=50,
... )
>>> image = out.images[0]
>>> image.save("cat_with_hat.png")
```
"""
# Copied from diffusers.pipelines.kandinsky2_2.pipeline_kandinsky2_2.downscale_height_and_width
def downscale_height_and_width(height, width, scale_factor=8):
new_height = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
new_width = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
# Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_inpaint.prepare_mask
def prepare_mask(masks):
prepared_masks = []
for mask in masks:
old_mask = deepcopy(mask)
for i in range(mask.shape[1]):
for j in range(mask.shape[2]):
if old_mask[0][i][j] == 1:
continue
if i != 0:
mask[:, i - 1, j] = 0
if j != 0:
mask[:, i, j - 1] = 0
if i != 0 and j != 0:
mask[:, i - 1, j - 1] = 0
if i != mask.shape[1] - 1:
mask[:, i + 1, j] = 0
if j != mask.shape[2] - 1:
mask[:, i, j + 1] = 0
if i != mask.shape[1] - 1 and j != mask.shape[2] - 1:
mask[:, i + 1, j + 1] = 0
prepared_masks.append(mask)
return torch.stack(prepared_masks, dim=0)
# Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_inpaint.prepare_mask_and_masked_image
def prepare_mask_and_masked_image(image, mask, height, width):
r"""
Prepares a pair (mask, image) to be consumed by the Kandinsky inpaint pipeline. This means that those inputs will
be converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for
the ``image`` and ``1`` for the ``mask``.
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
Args:
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
Raises:
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
(ot the other way around).
Returns:
tuple[torch.Tensor]: The pair (mask, image) as ``torch.Tensor`` with 4
dimensions: ``batch x channels x height x width``.
"""
if image is None:
raise ValueError("`image` input cannot be undefined.")
if mask is None:
raise ValueError("`mask_image` input cannot be undefined.")
if isinstance(image, torch.Tensor):
if not isinstance(mask, torch.Tensor):
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
# Batch single image
if image.ndim == 3:
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
image = image.unsqueeze(0)
# Batch and add channel dim for single mask
if mask.ndim == 2:
mask = mask.unsqueeze(0).unsqueeze(0)
# Batch single mask or add channel dim
if mask.ndim == 3:
# Single batched mask, no channel dim or single mask not batched but channel dim
if mask.shape[0] == 1:
mask = mask.unsqueeze(0)
# Batched masks no channel dim
else:
mask = mask.unsqueeze(1)
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
# Check image is in [-1, 1]
if image.min() < -1 or image.max() > 1:
raise ValueError("Image should be in [-1, 1] range")
# Check mask is in [0, 1]
if mask.min() < 0 or mask.max() > 1:
raise ValueError("Mask should be in [0, 1] range")
# Binarize mask
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
# Image as float32
image = image.to(dtype=torch.float32)
elif isinstance(mask, torch.Tensor):
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
else:
# preprocess image
if isinstance(image, (PIL.Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
# resize all images w.r.t passed height an width
image = [i.resize((width, height), resample=Image.BICUBIC, reducing_gap=1) for i in image]
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
# preprocess mask
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
mask = [mask]
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
mask = mask.astype(np.float32) / 255.0
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
mask = 1 - mask
return mask, image
class KandinskyV22InpaintPipeline(DiffusionPipeline):
"""
Pipeline for text-guided image inpainting using Kandinsky2.1
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
scheduler ([`DDIMScheduler`]):
A scheduler to be used in combination with `unet` to generate image latents.
unet ([`UNet2DConditionModel`]):
Conditional U-Net architecture to denoise the image embedding.
movq ([`VQModel`]):
MoVQ Decoder to generate the image from the latents.
"""
model_cpu_offload_seq = "unet->movq"
_callback_tensor_inputs = ["latents", "image_embeds", "negative_image_embeds", "masked_image", "mask_image"]
def __init__(
self,
unet: UNet2DConditionModel,
scheduler: DDPMScheduler,
movq: VQModel,
):
super().__init__()
self.register_modules(
unet=unet,
scheduler=scheduler,
movq=movq,
)
self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1)
self._warn_has_been_called = False
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
latents = latents * scheduler.init_noise_sigma
return latents
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def num_timesteps(self):
return self._num_timesteps
@torch.no_grad()
def __call__(
self,
image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
image: Union[torch.FloatTensor, PIL.Image.Image],
mask_image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
height: int = 512,
width: int = 512,
num_inference_steps: int = 100,
guidance_scale: float = 4.0,
num_images_per_prompt: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
**kwargs,
):
"""
Function invoked when calling the pipeline for generation.
Args:
image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
The clip image embeddings for text prompt, that will be used to condition the image generation.
image (`PIL.Image.Image`):
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
be masked out with `mask_image` and repainted according to `prompt`.
mask_image (`np.array`):
Tensor representing an image batch, to mask `image`. White pixels in the mask will be repainted, while
black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single
channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3,
so the expected shape would be `(B, H, W, 1)`.
negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
The clip image embeddings for negative text prompt, will be used to condition the image generation.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`
"""
if not self._warn_has_been_called and version.parse(version.parse(__version__).base_version) < version.parse(
"0.23.0.dev0"
):
logger.warning(
"Please note that the expected format of `mask_image` has recently been changed. "
"Before diffusers == 0.19.0, Kandinsky Inpainting pipelines repainted black pixels and preserved black pixels. "
"As of diffusers==0.19.0 this behavior has been inverted. Now white pixels are repainted and black pixels are preserved. "
"This way, Kandinsky's masking behavior is aligned with Stable Diffusion. "
"THIS means that you HAVE to invert the input mask to have the same behavior as before as explained in https://github.com/huggingface/diffusers/pull/4207. "
"This warning will be surpressed after the first inference call and will be removed in diffusers>0.23.0"
)
self._warn_has_been_called = True
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
self._guidance_scale = guidance_scale
device = self._execution_device
if isinstance(image_embeds, list):
image_embeds = torch.cat(image_embeds, dim=0)
batch_size = image_embeds.shape[0] * num_images_per_prompt
if isinstance(negative_image_embeds, list):
negative_image_embeds = torch.cat(negative_image_embeds, dim=0)
if self.do_classifier_free_guidance:
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to(
dtype=self.unet.dtype, device=device
)
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# preprocess image and mask
mask_image, image = prepare_mask_and_masked_image(image, mask_image, height, width)
image = image.to(dtype=image_embeds.dtype, device=device)
image = self.movq.encode(image)["latents"]
mask_image = mask_image.to(dtype=image_embeds.dtype, device=device)
image_shape = tuple(image.shape[-2:])
mask_image = F.interpolate(
mask_image,
image_shape,
mode="nearest",
)
mask_image = prepare_mask(mask_image)
masked_image = image * mask_image
mask_image = mask_image.repeat_interleave(num_images_per_prompt, dim=0)
masked_image = masked_image.repeat_interleave(num_images_per_prompt, dim=0)
if self.do_classifier_free_guidance:
mask_image = mask_image.repeat(2, 1, 1, 1)
masked_image = masked_image.repeat(2, 1, 1, 1)
num_channels_latents = self.movq.config.latent_channels
height, width = downscale_height_and_width(height, width, self.movq_scale_factor)
# create initial latent
latents = self.prepare_latents(
(batch_size, num_channels_latents, height, width),
image_embeds.dtype,
device,
generator,
latents,
self.scheduler,
)
noise = torch.clone(latents)
self._num_timesteps = len(timesteps)
for i, t in enumerate(self.progress_bar(timesteps)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = torch.cat([latent_model_input, masked_image, mask_image], dim=1)
added_cond_kwargs = {"image_embeds": image_embeds}
noise_pred = self.unet(
sample=latent_model_input,
timestep=t,
encoder_hidden_states=None,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
if self.do_classifier_free_guidance:
noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1)
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
_, variance_pred_text = variance_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1)
if not (
hasattr(self.scheduler.config, "variance_type")
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
noise_pred, _ = noise_pred.split(latents.shape[1], dim=1)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred,
t,
latents,
generator=generator,
)[0]
init_latents_proper = image[:1]
init_mask = mask_image[:1]
if i < len(timesteps) - 1:
noise_timestep = timesteps[i + 1]
init_latents_proper = self.scheduler.add_noise(
init_latents_proper, noise, torch.tensor([noise_timestep])
)
latents = init_mask * init_latents_proper + (1 - init_mask) * latents
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
image_embeds = callback_outputs.pop("image_embeds", image_embeds)
negative_image_embeds = callback_outputs.pop("negative_image_embeds", negative_image_embeds)
masked_image = callback_outputs.pop("masked_image", masked_image)
mask_image = callback_outputs.pop("mask_image", mask_image)
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
# post-processing
latents = mask_image[:1] * image[:1] + (1 - mask_image[:1]) * latents
if output_type not in ["pt", "np", "pil", "latent"]:
raise ValueError(
f"Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}"
)
if not output_type == "latent":
image = self.movq.decode(latents, force_not_quantize=True)["sample"]
if output_type in ["np", "pil"]:
image = image * 0.5 + 0.5
image = image.clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
else:
image = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
|