File size: 46,018 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
import html
import inspect
import re
import urllib.parse as ul
from typing import Any, Callable, Dict, List, Optional, Union

import numpy as np
import PIL.Image
import torch
from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer

from ...loaders import LoraLoaderMixin
from ...models import UNet2DConditionModel
from ...schedulers import DDPMScheduler
from ...utils import (
    BACKENDS_MAPPING,
    PIL_INTERPOLATION,
    is_bs4_available,
    is_ftfy_available,
    logging,
    replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from .pipeline_output import IFPipelineOutput
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

if is_bs4_available():
    from bs4 import BeautifulSoup

if is_ftfy_available():
    import ftfy


# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if_img2img.resize
def resize(images: PIL.Image.Image, img_size: int) -> PIL.Image.Image:
    w, h = images.size

    coef = w / h

    w, h = img_size, img_size

    if coef >= 1:
        w = int(round(img_size / 8 * coef) * 8)
    else:
        h = int(round(img_size / 8 / coef) * 8)

    images = images.resize((w, h), resample=PIL_INTERPOLATION["bicubic"], reducing_gap=None)

    return images


EXAMPLE_DOC_STRING = """

    Examples:

        ```py

        >>> from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, DiffusionPipeline

        >>> from diffusers.utils import pt_to_pil

        >>> import torch

        >>> from PIL import Image

        >>> import requests

        >>> from io import BytesIO



        >>> url = "https://huggingface.co./datasets/diffusers/docs-images/resolve/main/if/person.png"

        >>> response = requests.get(url)

        >>> original_image = Image.open(BytesIO(response.content)).convert("RGB")

        >>> original_image = original_image



        >>> url = "https://huggingface.co./datasets/diffusers/docs-images/resolve/main/if/glasses_mask.png"

        >>> response = requests.get(url)

        >>> mask_image = Image.open(BytesIO(response.content))

        >>> mask_image = mask_image



        >>> pipe = IFInpaintingPipeline.from_pretrained(

        ...     "DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16

        ... )

        >>> pipe.enable_model_cpu_offload()



        >>> prompt = "blue sunglasses"

        >>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)



        >>> image = pipe(

        ...     image=original_image,

        ...     mask_image=mask_image,

        ...     prompt_embeds=prompt_embeds,

        ...     negative_prompt_embeds=negative_embeds,

        ...     output_type="pt",

        ... ).images



        >>> # save intermediate image

        >>> pil_image = pt_to_pil(image)

        >>> pil_image[0].save("./if_stage_I.png")



        >>> super_res_1_pipe = IFInpaintingSuperResolutionPipeline.from_pretrained(

        ...     "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16

        ... )

        >>> super_res_1_pipe.enable_model_cpu_offload()



        >>> image = super_res_1_pipe(

        ...     image=image,

        ...     mask_image=mask_image,

        ...     original_image=original_image,

        ...     prompt_embeds=prompt_embeds,

        ...     negative_prompt_embeds=negative_embeds,

        ... ).images

        >>> image[0].save("./if_stage_II.png")

        ```

"""


class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
    tokenizer: T5Tokenizer
    text_encoder: T5EncoderModel

    unet: UNet2DConditionModel
    scheduler: DDPMScheduler

    feature_extractor: Optional[CLIPImageProcessor]
    safety_checker: Optional[IFSafetyChecker]

    watermarker: Optional[IFWatermarker]

    bad_punct_regex = re.compile(
        r"["
        + "#®•©™&@·º½¾¿¡§~"
        + r"\)"
        + r"\("
        + r"\]"
        + r"\["
        + r"\}"
        + r"\{"
        + r"\|"
        + "\\"
        + r"\/"
        + r"\*"
        + r"]{1,}"
    )  # noqa

    _optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
    model_cpu_offload_seq = "text_encoder->unet"
    _exclude_from_cpu_offload = ["watermarker"]

    def __init__(

        self,

        tokenizer: T5Tokenizer,

        text_encoder: T5EncoderModel,

        unet: UNet2DConditionModel,

        scheduler: DDPMScheduler,

        safety_checker: Optional[IFSafetyChecker],

        feature_extractor: Optional[CLIPImageProcessor],

        watermarker: Optional[IFWatermarker],

        requires_safety_checker: bool = True,

    ):
        super().__init__()

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the IF license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        self.register_modules(
            tokenizer=tokenizer,
            text_encoder=text_encoder,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
            watermarker=watermarker,
        )
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    @torch.no_grad()
    # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.encode_prompt
    def encode_prompt(

        self,

        prompt: Union[str, List[str]],

        do_classifier_free_guidance: bool = True,

        num_images_per_prompt: int = 1,

        device: Optional[torch.device] = None,

        negative_prompt: Optional[Union[str, List[str]]] = None,

        prompt_embeds: Optional[torch.FloatTensor] = None,

        negative_prompt_embeds: Optional[torch.FloatTensor] = None,

        clean_caption: bool = False,

    ):
        r"""

        Encodes the prompt into text encoder hidden states.



        Args:

            prompt (`str` or `List[str]`, *optional*):

                prompt to be encoded

            do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):

                whether to use classifier free guidance or not

            num_images_per_prompt (`int`, *optional*, defaults to 1):

                number of images that should be generated per prompt

            device: (`torch.device`, *optional*):

                torch device to place the resulting embeddings on

            negative_prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts not to guide the image generation. If not defined, one has to pass

                `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.

                Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).

            prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

                provided, text embeddings will be generated from `prompt` input argument.

            negative_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input

                argument.

            clean_caption (bool, defaults to `False`):

                If `True`, the function will preprocess and clean the provided caption before encoding.

        """
        if prompt is not None and negative_prompt is not None:
            if type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )

        if device is None:
            device = self._execution_device

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # while T5 can handle much longer input sequences than 77, the text encoder was trained with a max length of 77 for IF
        max_length = 77

        if prompt_embeds is None:
            prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                add_special_tokens=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {max_length} tokens: {removed_text}"
                )

            attention_mask = text_inputs.attention_mask.to(device)

            prompt_embeds = self.text_encoder(
                text_input_ids.to(device),
                attention_mask=attention_mask,
            )
            prompt_embeds = prompt_embeds[0]

        if self.text_encoder is not None:
            dtype = self.text_encoder.dtype
        elif self.unet is not None:
            dtype = self.unet.dtype
        else:
            dtype = None

        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_attention_mask=True,
                add_special_tokens=True,
                return_tensors="pt",
            )
            attention_mask = uncond_input.attention_mask.to(device)

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
        else:
            negative_prompt_embeds = None

        return prompt_embeds, negative_prompt_embeds

    # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.run_safety_checker
    def run_safety_checker(self, image, device, dtype):
        if self.safety_checker is not None:
            safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
            image, nsfw_detected, watermark_detected = self.safety_checker(
                images=image,
                clip_input=safety_checker_input.pixel_values.to(dtype=dtype),
            )
        else:
            nsfw_detected = None
            watermark_detected = None

        return image, nsfw_detected, watermark_detected

    # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(

        self,

        prompt,

        image,

        mask_image,

        batch_size,

        callback_steps,

        negative_prompt=None,

        prompt_embeds=None,

        negative_prompt_embeds=None,

    ):
        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        # image

        if isinstance(image, list):
            check_image_type = image[0]
        else:
            check_image_type = image

        if (
            not isinstance(check_image_type, torch.Tensor)
            and not isinstance(check_image_type, PIL.Image.Image)
            and not isinstance(check_image_type, np.ndarray)
        ):
            raise ValueError(
                "`image` has to be of type `torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is"
                f" {type(check_image_type)}"
            )

        if isinstance(image, list):
            image_batch_size = len(image)
        elif isinstance(image, torch.Tensor):
            image_batch_size = image.shape[0]
        elif isinstance(image, PIL.Image.Image):
            image_batch_size = 1
        elif isinstance(image, np.ndarray):
            image_batch_size = image.shape[0]
        else:
            assert False

        if batch_size != image_batch_size:
            raise ValueError(f"image batch size: {image_batch_size} must be same as prompt batch size {batch_size}")

        # mask_image

        if isinstance(mask_image, list):
            check_image_type = mask_image[0]
        else:
            check_image_type = mask_image

        if (
            not isinstance(check_image_type, torch.Tensor)
            and not isinstance(check_image_type, PIL.Image.Image)
            and not isinstance(check_image_type, np.ndarray)
        ):
            raise ValueError(
                "`mask_image` has to be of type `torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is"
                f" {type(check_image_type)}"
            )

        if isinstance(mask_image, list):
            image_batch_size = len(mask_image)
        elif isinstance(mask_image, torch.Tensor):
            image_batch_size = mask_image.shape[0]
        elif isinstance(mask_image, PIL.Image.Image):
            image_batch_size = 1
        elif isinstance(mask_image, np.ndarray):
            image_batch_size = mask_image.shape[0]
        else:
            assert False

        if image_batch_size != 1 and batch_size != image_batch_size:
            raise ValueError(
                f"mask_image batch size: {image_batch_size} must be `1` or the same as prompt batch size {batch_size}"
            )

    # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
    def _text_preprocessing(self, text, clean_caption=False):
        if clean_caption and not is_bs4_available():
            logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
            logger.warning("Setting `clean_caption` to False...")
            clean_caption = False

        if clean_caption and not is_ftfy_available():
            logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
            logger.warning("Setting `clean_caption` to False...")
            clean_caption = False

        if not isinstance(text, (tuple, list)):
            text = [text]

        def process(text: str):
            if clean_caption:
                text = self._clean_caption(text)
                text = self._clean_caption(text)
            else:
                text = text.lower().strip()
            return text

        return [process(t) for t in text]

    # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
    def _clean_caption(self, caption):
        caption = str(caption)
        caption = ul.unquote_plus(caption)
        caption = caption.strip().lower()
        caption = re.sub("<person>", "person", caption)
        # urls:
        caption = re.sub(
            r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
            "",
            caption,
        )  # regex for urls
        caption = re.sub(
            r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
            "",
            caption,
        )  # regex for urls
        # html:
        caption = BeautifulSoup(caption, features="html.parser").text

        # @<nickname>
        caption = re.sub(r"@[\w\d]+\b", "", caption)

        # 31C0—31EF CJK Strokes
        # 31F0—31FF Katakana Phonetic Extensions
        # 3200—32FF Enclosed CJK Letters and Months
        # 3300—33FF CJK Compatibility
        # 3400—4DBF CJK Unified Ideographs Extension A
        # 4DC0—4DFF Yijing Hexagram Symbols
        # 4E00—9FFF CJK Unified Ideographs
        caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
        caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
        caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
        caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
        caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
        caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
        caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
        #######################################################

        # все виды тире / all types of dash --> "-"
        caption = re.sub(
            r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+",  # noqa
            "-",
            caption,
        )

        # кавычки к одному стандарту
        caption = re.sub(r"[`´«»“”¨]", '"', caption)
        caption = re.sub(r"[‘’]", "'", caption)

        # &quot;
        caption = re.sub(r"&quot;?", "", caption)
        # &amp
        caption = re.sub(r"&amp", "", caption)

        # ip adresses:
        caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)

        # article ids:
        caption = re.sub(r"\d:\d\d\s+$", "", caption)

        # \n
        caption = re.sub(r"\\n", " ", caption)

        # "#123"
        caption = re.sub(r"#\d{1,3}\b", "", caption)
        # "#12345.."
        caption = re.sub(r"#\d{5,}\b", "", caption)
        # "123456.."
        caption = re.sub(r"\b\d{6,}\b", "", caption)
        # filenames:
        caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)

        #
        caption = re.sub(r"[\"\']{2,}", r'"', caption)  # """AUSVERKAUFT"""
        caption = re.sub(r"[\.]{2,}", r" ", caption)  # """AUSVERKAUFT"""

        caption = re.sub(self.bad_punct_regex, r" ", caption)  # ***AUSVERKAUFT***, #AUSVERKAUFT
        caption = re.sub(r"\s+\.\s+", r" ", caption)  # " . "

        # this-is-my-cute-cat / this_is_my_cute_cat
        regex2 = re.compile(r"(?:\-|\_)")
        if len(re.findall(regex2, caption)) > 3:
            caption = re.sub(regex2, " ", caption)

        caption = ftfy.fix_text(caption)
        caption = html.unescape(html.unescape(caption))

        caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption)  # jc6640
        caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption)  # jc6640vc
        caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption)  # 6640vc231

        caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
        caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
        caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
        caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
        caption = re.sub(r"\bpage\s+\d+\b", "", caption)

        caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption)  # j2d1a2a...

        caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)

        caption = re.sub(r"\b\s+\:\s+", r": ", caption)
        caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
        caption = re.sub(r"\s+", " ", caption)

        caption.strip()

        caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
        caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
        caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
        caption = re.sub(r"^\.\S+$", "", caption)

        return caption.strip()

    # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if_img2img.IFImg2ImgPipeline.preprocess_image
    def preprocess_image(self, image: PIL.Image.Image) -> torch.Tensor:
        if not isinstance(image, list):
            image = [image]

        def numpy_to_pt(images):
            if images.ndim == 3:
                images = images[..., None]

            images = torch.from_numpy(images.transpose(0, 3, 1, 2))
            return images

        if isinstance(image[0], PIL.Image.Image):
            new_image = []

            for image_ in image:
                image_ = image_.convert("RGB")
                image_ = resize(image_, self.unet.config.sample_size)
                image_ = np.array(image_)
                image_ = image_.astype(np.float32)
                image_ = image_ / 127.5 - 1
                new_image.append(image_)

            image = new_image

            image = np.stack(image, axis=0)  # to np
            image = numpy_to_pt(image)  # to pt

        elif isinstance(image[0], np.ndarray):
            image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
            image = numpy_to_pt(image)

        elif isinstance(image[0], torch.Tensor):
            image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)

        return image

    def preprocess_mask_image(self, mask_image) -> torch.Tensor:
        if not isinstance(mask_image, list):
            mask_image = [mask_image]

        if isinstance(mask_image[0], torch.Tensor):
            mask_image = torch.cat(mask_image, axis=0) if mask_image[0].ndim == 4 else torch.stack(mask_image, axis=0)

            if mask_image.ndim == 2:
                # Batch and add channel dim for single mask
                mask_image = mask_image.unsqueeze(0).unsqueeze(0)
            elif mask_image.ndim == 3 and mask_image.shape[0] == 1:
                # Single mask, the 0'th dimension is considered to be
                # the existing batch size of 1
                mask_image = mask_image.unsqueeze(0)
            elif mask_image.ndim == 3 and mask_image.shape[0] != 1:
                # Batch of mask, the 0'th dimension is considered to be
                # the batching dimension
                mask_image = mask_image.unsqueeze(1)

            mask_image[mask_image < 0.5] = 0
            mask_image[mask_image >= 0.5] = 1

        elif isinstance(mask_image[0], PIL.Image.Image):
            new_mask_image = []

            for mask_image_ in mask_image:
                mask_image_ = mask_image_.convert("L")
                mask_image_ = resize(mask_image_, self.unet.config.sample_size)
                mask_image_ = np.array(mask_image_)
                mask_image_ = mask_image_[None, None, :]
                new_mask_image.append(mask_image_)

            mask_image = new_mask_image

            mask_image = np.concatenate(mask_image, axis=0)
            mask_image = mask_image.astype(np.float32) / 255.0
            mask_image[mask_image < 0.5] = 0
            mask_image[mask_image >= 0.5] = 1
            mask_image = torch.from_numpy(mask_image)

        elif isinstance(mask_image[0], np.ndarray):
            mask_image = np.concatenate([m[None, None, :] for m in mask_image], axis=0)

            mask_image[mask_image < 0.5] = 0
            mask_image[mask_image >= 0.5] = 1
            mask_image = torch.from_numpy(mask_image)

        return mask_image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
    def get_timesteps(self, num_inference_steps, strength):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
        if hasattr(self.scheduler, "set_begin_index"):
            self.scheduler.set_begin_index(t_start * self.scheduler.order)

        return timesteps, num_inference_steps - t_start

    def prepare_intermediate_images(

        self, image, timestep, batch_size, num_images_per_prompt, dtype, device, mask_image, generator=None

    ):
        image_batch_size, channels, height, width = image.shape

        batch_size = batch_size * num_images_per_prompt

        shape = (batch_size, channels, height, width)

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)

        image = image.repeat_interleave(num_images_per_prompt, dim=0)
        noised_image = self.scheduler.add_noise(image, noise, timestep)

        image = (1 - mask_image) * image + mask_image * noised_image

        return image

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(

        self,

        prompt: Union[str, List[str]] = None,

        image: Union[

            PIL.Image.Image, torch.Tensor, np.ndarray, List[PIL.Image.Image], List[torch.Tensor], List[np.ndarray]

        ] = None,

        mask_image: Union[

            PIL.Image.Image, torch.Tensor, np.ndarray, List[PIL.Image.Image], List[torch.Tensor], List[np.ndarray]

        ] = None,

        strength: float = 1.0,

        num_inference_steps: int = 50,

        timesteps: List[int] = None,

        guidance_scale: float = 7.0,

        negative_prompt: Optional[Union[str, List[str]]] = None,

        num_images_per_prompt: Optional[int] = 1,

        eta: float = 0.0,

        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,

        prompt_embeds: Optional[torch.FloatTensor] = None,

        negative_prompt_embeds: Optional[torch.FloatTensor] = None,

        output_type: Optional[str] = "pil",

        return_dict: bool = True,

        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,

        callback_steps: int = 1,

        clean_caption: bool = True,

        cross_attention_kwargs: Optional[Dict[str, Any]] = None,

    ):
        """

        Function invoked when calling the pipeline for generation.



        Args:

            prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.

                instead.

            image (`torch.FloatTensor` or `PIL.Image.Image`):

                `Image`, or tensor representing an image batch, that will be used as the starting point for the

                process.

            mask_image (`PIL.Image.Image`):

                `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be

                repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted

                to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)

                instead of 3, so the expected shape would be `(B, H, W, 1)`.

            strength (`float`, *optional*, defaults to 1.0):

                Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`

                will be used as a starting point, adding more noise to it the larger the `strength`. The number of

                denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will

                be maximum and the denoising process will run for the full number of iterations specified in

                `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.

            num_inference_steps (`int`, *optional*, defaults to 50):

                The number of denoising steps. More denoising steps usually lead to a higher quality image at the

                expense of slower inference.

            timesteps (`List[int]`, *optional*):

                Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`

                timesteps are used. Must be in descending order.

            guidance_scale (`float`, *optional*, defaults to 7.0):

                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).

                `guidance_scale` is defined as `w` of equation 2. of [Imagen

                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >

                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,

                usually at the expense of lower image quality.

            negative_prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts not to guide the image generation. If not defined, one has to pass

                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is

                less than `1`).

            num_images_per_prompt (`int`, *optional*, defaults to 1):

                The number of images to generate per prompt.

            eta (`float`, *optional*, defaults to 0.0):

                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to

                [`schedulers.DDIMScheduler`], will be ignored for others.

            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):

                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)

                to make generation deterministic.

            prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

                provided, text embeddings will be generated from `prompt` input argument.

            negative_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input

                argument.

            output_type (`str`, *optional*, defaults to `"pil"`):

                The output format of the generate image. Choose between

                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.

            callback (`Callable`, *optional*):

                A function that will be called every `callback_steps` steps during inference. The function will be

                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.

            callback_steps (`int`, *optional*, defaults to 1):

                The frequency at which the `callback` function will be called. If not specified, the callback will be

                called at every step.

            clean_caption (`bool`, *optional*, defaults to `True`):

                Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to

                be installed. If the dependencies are not installed, the embeddings will be created from the raw

                prompt.

            cross_attention_kwargs (`dict`, *optional*):

                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under

                `self.processor` in

                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).



        Examples:



        Returns:

            [`~pipelines.stable_diffusion.IFPipelineOutput`] or `tuple`:

            [`~pipelines.stable_diffusion.IFPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When

            returning a tuple, the first element is a list with the generated images, and the second element is a list

            of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw)

            or watermarked content, according to the `safety_checker`.

        """
        # 1. Check inputs. Raise error if not correct
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        self.check_inputs(
            prompt,
            image,
            mask_image,
            batch_size,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
        )

        # 2. Define call parameters
        device = self._execution_device

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            do_classifier_free_guidance,
            num_images_per_prompt=num_images_per_prompt,
            device=device,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            clean_caption=clean_caption,
        )

        if do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        dtype = prompt_embeds.dtype

        # 4. Prepare timesteps
        if timesteps is not None:
            self.scheduler.set_timesteps(timesteps=timesteps, device=device)
            timesteps = self.scheduler.timesteps
            num_inference_steps = len(timesteps)
        else:
            self.scheduler.set_timesteps(num_inference_steps, device=device)
            timesteps = self.scheduler.timesteps

        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)

        # 5. Prepare intermediate images
        image = self.preprocess_image(image)
        image = image.to(device=device, dtype=dtype)

        mask_image = self.preprocess_mask_image(mask_image)
        mask_image = mask_image.to(device=device, dtype=dtype)

        if mask_image.shape[0] == 1:
            mask_image = mask_image.repeat_interleave(batch_size * num_images_per_prompt, dim=0)
        else:
            mask_image = mask_image.repeat_interleave(num_images_per_prompt, dim=0)

        noise_timestep = timesteps[0:1]
        noise_timestep = noise_timestep.repeat(batch_size * num_images_per_prompt)

        intermediate_images = self.prepare_intermediate_images(
            image, noise_timestep, batch_size, num_images_per_prompt, dtype, device, mask_image, generator
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # HACK: see comment in `enable_model_cpu_offload`
        if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None:
            self.text_encoder_offload_hook.offload()

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                model_input = (
                    torch.cat([intermediate_images] * 2) if do_classifier_free_guidance else intermediate_images
                )
                model_input = self.scheduler.scale_model_input(model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred_uncond, _ = noise_pred_uncond.split(model_input.shape[1], dim=1)
                    noise_pred_text, predicted_variance = noise_pred_text.split(model_input.shape[1], dim=1)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
                    noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)

                if self.scheduler.config.variance_type not in ["learned", "learned_range"]:
                    noise_pred, _ = noise_pred.split(model_input.shape[1], dim=1)

                # compute the previous noisy sample x_t -> x_t-1
                prev_intermediate_images = intermediate_images

                intermediate_images = self.scheduler.step(
                    noise_pred, t, intermediate_images, **extra_step_kwargs, return_dict=False
                )[0]

                intermediate_images = (1 - mask_image) * prev_intermediate_images + mask_image * intermediate_images

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, intermediate_images)

        image = intermediate_images

        if output_type == "pil":
            # 8. Post-processing
            image = (image / 2 + 0.5).clamp(0, 1)
            image = image.cpu().permute(0, 2, 3, 1).float().numpy()

            # 9. Run safety checker
            image, nsfw_detected, watermark_detected = self.run_safety_checker(image, device, prompt_embeds.dtype)

            # 10. Convert to PIL
            image = self.numpy_to_pil(image)

            # 11. Apply watermark
            if self.watermarker is not None:
                self.watermarker.apply_watermark(image, self.unet.config.sample_size)
        elif output_type == "pt":
            nsfw_detected = None
            watermark_detected = None

            if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None:
                self.unet_offload_hook.offload()
        else:
            # 8. Post-processing
            image = (image / 2 + 0.5).clamp(0, 1)
            image = image.cpu().permute(0, 2, 3, 1).float().numpy()

            # 9. Run safety checker
            image, nsfw_detected, watermark_detected = self.run_safety_checker(image, device, prompt_embeds.dtype)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image, nsfw_detected, watermark_detected)

        return IFPipelineOutput(images=image, nsfw_detected=nsfw_detected, watermark_detected=watermark_detected)