File size: 12,668 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Callable, List, Optional, Union

import torch

from ...models import UNet2DModel
from ...schedulers import CMStochasticIterativeScheduler
from ...utils import (
    logging,
    replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """

    Examples:

        ```py

        >>> import torch



        >>> from diffusers import ConsistencyModelPipeline



        >>> device = "cuda"

        >>> # Load the cd_imagenet64_l2 checkpoint.

        >>> model_id_or_path = "openai/diffusers-cd_imagenet64_l2"

        >>> pipe = ConsistencyModelPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)

        >>> pipe.to(device)



        >>> # Onestep Sampling

        >>> image = pipe(num_inference_steps=1).images[0]

        >>> image.save("cd_imagenet64_l2_onestep_sample.png")



        >>> # Onestep sampling, class-conditional image generation

        >>> # ImageNet-64 class label 145 corresponds to king penguins

        >>> image = pipe(num_inference_steps=1, class_labels=145).images[0]

        >>> image.save("cd_imagenet64_l2_onestep_sample_penguin.png")



        >>> # Multistep sampling, class-conditional image generation

        >>> # Timesteps can be explicitly specified; the particular timesteps below are from the original Github repo:

        >>> # https://github.com/openai/consistency_models/blob/main/scripts/launch.sh#L77

        >>> image = pipe(num_inference_steps=None, timesteps=[22, 0], class_labels=145).images[0]

        >>> image.save("cd_imagenet64_l2_multistep_sample_penguin.png")

        ```

"""


class ConsistencyModelPipeline(DiffusionPipeline):
    r"""

    Pipeline for unconditional or class-conditional image generation.



    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods

    implemented for all pipelines (downloading, saving, running on a particular device, etc.).



    Args:

        unet ([`UNet2DModel`]):

            A `UNet2DModel` to denoise the encoded image latents.

        scheduler ([`SchedulerMixin`]):

            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Currently only

            compatible with [`CMStochasticIterativeScheduler`].

    """

    model_cpu_offload_seq = "unet"

    def __init__(self, unet: UNet2DModel, scheduler: CMStochasticIterativeScheduler) -> None:
        super().__init__()

        self.register_modules(
            unet=unet,
            scheduler=scheduler,
        )

        self.safety_checker = None

    def prepare_latents(self, batch_size, num_channels, height, width, dtype, device, generator, latents=None):
        shape = (batch_size, num_channels, height, width)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device=device, dtype=dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    # Follows diffusers.VaeImageProcessor.postprocess
    def postprocess_image(self, sample: torch.FloatTensor, output_type: str = "pil"):
        if output_type not in ["pt", "np", "pil"]:
            raise ValueError(
                f"output_type={output_type} is not supported. Make sure to choose one of ['pt', 'np', or 'pil']"
            )

        # Equivalent to diffusers.VaeImageProcessor.denormalize
        sample = (sample / 2 + 0.5).clamp(0, 1)
        if output_type == "pt":
            return sample

        # Equivalent to diffusers.VaeImageProcessor.pt_to_numpy
        sample = sample.cpu().permute(0, 2, 3, 1).numpy()
        if output_type == "np":
            return sample

        # Output_type must be 'pil'
        sample = self.numpy_to_pil(sample)
        return sample

    def prepare_class_labels(self, batch_size, device, class_labels=None):
        if self.unet.config.num_class_embeds is not None:
            if isinstance(class_labels, list):
                class_labels = torch.tensor(class_labels, dtype=torch.int)
            elif isinstance(class_labels, int):
                assert batch_size == 1, "Batch size must be 1 if classes is an int"
                class_labels = torch.tensor([class_labels], dtype=torch.int)
            elif class_labels is None:
                # Randomly generate batch_size class labels
                # TODO: should use generator here? int analogue of randn_tensor is not exposed in ...utils
                class_labels = torch.randint(0, self.unet.config.num_class_embeds, size=(batch_size,))
            class_labels = class_labels.to(device)
        else:
            class_labels = None
        return class_labels

    def check_inputs(self, num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps):
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.")

        if num_inference_steps is not None and timesteps is not None:
            logger.warning(
                f"Both `num_inference_steps`: {num_inference_steps} and `timesteps`: {timesteps} are supplied;"
                " `timesteps` will be used over `num_inference_steps`."
            )

        if latents is not None:
            expected_shape = (batch_size, 3, img_size, img_size)
            if latents.shape != expected_shape:
                raise ValueError(f"The shape of latents is {latents.shape} but is expected to be {expected_shape}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(

        self,

        batch_size: int = 1,

        class_labels: Optional[Union[torch.Tensor, List[int], int]] = None,

        num_inference_steps: int = 1,

        timesteps: List[int] = None,

        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,

        latents: Optional[torch.FloatTensor] = None,

        output_type: Optional[str] = "pil",

        return_dict: bool = True,

        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,

        callback_steps: int = 1,

    ):
        r"""

        Args:

            batch_size (`int`, *optional*, defaults to 1):

                The number of images to generate.

            class_labels (`torch.Tensor` or `List[int]` or `int`, *optional*):

                Optional class labels for conditioning class-conditional consistency models. Not used if the model is

                not class-conditional.

            num_inference_steps (`int`, *optional*, defaults to 1):

                The number of denoising steps. More denoising steps usually lead to a higher quality image at the

                expense of slower inference.

            timesteps (`List[int]`, *optional*):

                Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`

                timesteps are used. Must be in descending order.

            generator (`torch.Generator`, *optional*):

                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make

                generation deterministic.

            latents (`torch.FloatTensor`, *optional*):

                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image

                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents

                tensor is generated by sampling using the supplied random `generator`.

            output_type (`str`, *optional*, defaults to `"pil"`):

                The output format of the generated image. Choose between `PIL.Image` or `np.array`.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.

            callback (`Callable`, *optional*):

                A function that calls every `callback_steps` steps during inference. The function is called with the

                following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.

            callback_steps (`int`, *optional*, defaults to 1):

                The frequency at which the `callback` function is called. If not specified, the callback is called at

                every step.



        Examples:



        Returns:

            [`~pipelines.ImagePipelineOutput`] or `tuple`:

                If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is

                returned where the first element is a list with the generated images.

        """
        # 0. Prepare call parameters
        img_size = self.unet.config.sample_size
        device = self._execution_device

        # 1. Check inputs
        self.check_inputs(num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps)

        # 2. Prepare image latents
        # Sample image latents x_0 ~ N(0, sigma_0^2 * I)
        sample = self.prepare_latents(
            batch_size=batch_size,
            num_channels=self.unet.config.in_channels,
            height=img_size,
            width=img_size,
            dtype=self.unet.dtype,
            device=device,
            generator=generator,
            latents=latents,
        )

        # 3. Handle class_labels for class-conditional models
        class_labels = self.prepare_class_labels(batch_size, device, class_labels=class_labels)

        # 4. Prepare timesteps
        if timesteps is not None:
            self.scheduler.set_timesteps(timesteps=timesteps, device=device)
            timesteps = self.scheduler.timesteps
            num_inference_steps = len(timesteps)
        else:
            self.scheduler.set_timesteps(num_inference_steps)
            timesteps = self.scheduler.timesteps

        # 5. Denoising loop
        # Multistep sampling: implements Algorithm 1 in the paper
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                scaled_sample = self.scheduler.scale_model_input(sample, t)
                model_output = self.unet(scaled_sample, t, class_labels=class_labels, return_dict=False)[0]

                sample = self.scheduler.step(model_output, t, sample, generator=generator)[0]

                # call the callback, if provided
                progress_bar.update()
                if callback is not None and i % callback_steps == 0:
                    callback(i, t, sample)

        # 6. Post-process image sample
        image = self.postprocess_image(sample, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)