File size: 3,439 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import math
import os
import requests
from torch.hub import download_url_to_file, get_dir
from tqdm import tqdm
from urllib.parse import urlparse

from .misc import sizeof_fmt


def download_file_from_google_drive(file_id, save_path):
    """Download files from google drive.



    Reference: https://stackoverflow.com/questions/25010369/wget-curl-large-file-from-google-drive



    Args:

        file_id (str): File id.

        save_path (str): Save path.

    """

    session = requests.Session()
    URL = 'https://docs.google.com/uc?export=download'
    params = {'id': file_id}

    response = session.get(URL, params=params, stream=True)
    token = get_confirm_token(response)
    if token:
        params['confirm'] = token
        response = session.get(URL, params=params, stream=True)

    # get file size
    response_file_size = session.get(URL, params=params, stream=True, headers={'Range': 'bytes=0-2'})
    if 'Content-Range' in response_file_size.headers:
        file_size = int(response_file_size.headers['Content-Range'].split('/')[1])
    else:
        file_size = None

    save_response_content(response, save_path, file_size)


def get_confirm_token(response):
    for key, value in response.cookies.items():
        if key.startswith('download_warning'):
            return value
    return None


def save_response_content(response, destination, file_size=None, chunk_size=32768):
    if file_size is not None:
        pbar = tqdm(total=math.ceil(file_size / chunk_size), unit='chunk')

        readable_file_size = sizeof_fmt(file_size)
    else:
        pbar = None

    with open(destination, 'wb') as f:
        downloaded_size = 0
        for chunk in response.iter_content(chunk_size):
            downloaded_size += chunk_size
            if pbar is not None:
                pbar.update(1)
                pbar.set_description(f'Download {sizeof_fmt(downloaded_size)} / {readable_file_size}')
            if chunk:  # filter out keep-alive new chunks
                f.write(chunk)
        if pbar is not None:
            pbar.close()


def load_file_from_url(url, model_dir=None, progress=True, file_name=None):
    """Load file form http url, will download models if necessary.



    Reference: https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py



    Args:

        url (str): URL to be downloaded.

        model_dir (str): The path to save the downloaded model. Should be a full path. If None, use pytorch hub_dir.

            Default: None.

        progress (bool): Whether to show the download progress. Default: True.

        file_name (str): The downloaded file name. If None, use the file name in the url. Default: None.



    Returns:

        str: The path to the downloaded file.

    """
    if model_dir is None:  # use the pytorch hub_dir
        hub_dir = get_dir()
        model_dir = os.path.join(hub_dir, 'checkpoints')

    os.makedirs(model_dir, exist_ok=True)

    parts = urlparse(url)
    filename = os.path.basename(parts.path)
    if file_name is not None:
        filename = file_name
    cached_file = os.path.abspath(os.path.join(model_dir, filename))
    if not os.path.exists(cached_file):
        print(f'Downloading: "{url}" to {cached_file}\n')
        download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
    return cached_file