File size: 8,365 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
from collections import Counter
from os import path as osp
from torch import distributed as dist
from tqdm import tqdm

from basicsr.metrics import calculate_metric
from basicsr.utils import get_root_logger, imwrite, tensor2img
from basicsr.utils.dist_util import get_dist_info
from basicsr.utils.registry import MODEL_REGISTRY
from .video_base_model import VideoBaseModel


@MODEL_REGISTRY.register()
class VideoRecurrentModel(VideoBaseModel):

    def __init__(self, opt):
        super(VideoRecurrentModel, self).__init__(opt)
        if self.is_train:
            self.fix_flow_iter = opt['train'].get('fix_flow')

    def setup_optimizers(self):
        train_opt = self.opt['train']
        flow_lr_mul = train_opt.get('flow_lr_mul', 1)
        logger = get_root_logger()
        logger.info(f'Multiple the learning rate for flow network with {flow_lr_mul}.')
        if flow_lr_mul == 1:
            optim_params = self.net_g.parameters()
        else:  # separate flow params and normal params for different lr
            normal_params = []
            flow_params = []
            for name, param in self.net_g.named_parameters():
                if 'spynet' in name:
                    flow_params.append(param)
                else:
                    normal_params.append(param)
            optim_params = [
                {  # add normal params first
                    'params': normal_params,
                    'lr': train_opt['optim_g']['lr']
                },
                {
                    'params': flow_params,
                    'lr': train_opt['optim_g']['lr'] * flow_lr_mul
                },
            ]

        optim_type = train_opt['optim_g'].pop('type')
        self.optimizer_g = self.get_optimizer(optim_type, optim_params, **train_opt['optim_g'])
        self.optimizers.append(self.optimizer_g)

    def optimize_parameters(self, current_iter):
        if self.fix_flow_iter:
            logger = get_root_logger()
            if current_iter == 1:
                logger.info(f'Fix flow network and feature extractor for {self.fix_flow_iter} iters.')
                for name, param in self.net_g.named_parameters():
                    if 'spynet' in name or 'edvr' in name:
                        param.requires_grad_(False)
            elif current_iter == self.fix_flow_iter:
                logger.warning('Train all the parameters.')
                self.net_g.requires_grad_(True)

        super(VideoRecurrentModel, self).optimize_parameters(current_iter)

    def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
        dataset = dataloader.dataset
        dataset_name = dataset.opt['name']
        with_metrics = self.opt['val']['metrics'] is not None
        # initialize self.metric_results
        # It is a dict: {
        #    'folder1': tensor (num_frame x len(metrics)),
        #    'folder2': tensor (num_frame x len(metrics))
        # }
        if with_metrics:
            if not hasattr(self, 'metric_results'):  # only execute in the first run
                self.metric_results = {}
                num_frame_each_folder = Counter(dataset.data_info['folder'])
                for folder, num_frame in num_frame_each_folder.items():
                    self.metric_results[folder] = torch.zeros(
                        num_frame, len(self.opt['val']['metrics']), dtype=torch.float32, device='cuda')
            # initialize the best metric results
            self._initialize_best_metric_results(dataset_name)
        # zero self.metric_results
        rank, world_size = get_dist_info()
        if with_metrics:
            for _, tensor in self.metric_results.items():
                tensor.zero_()

        metric_data = dict()
        num_folders = len(dataset)
        num_pad = (world_size - (num_folders % world_size)) % world_size
        if rank == 0:
            pbar = tqdm(total=len(dataset), unit='folder')
        # Will evaluate (num_folders + num_pad) times, but only the first num_folders results will be recorded.
        # (To avoid wait-dead)
        for i in range(rank, num_folders + num_pad, world_size):
            idx = min(i, num_folders - 1)
            val_data = dataset[idx]
            folder = val_data['folder']

            # compute outputs
            val_data['lq'].unsqueeze_(0)
            val_data['gt'].unsqueeze_(0)
            self.feed_data(val_data)
            val_data['lq'].squeeze_(0)
            val_data['gt'].squeeze_(0)

            self.test()
            visuals = self.get_current_visuals()

            # tentative for out of GPU memory
            del self.lq
            del self.output
            if 'gt' in visuals:
                del self.gt
            torch.cuda.empty_cache()

            if self.center_frame_only:
                visuals['result'] = visuals['result'].unsqueeze(1)
                if 'gt' in visuals:
                    visuals['gt'] = visuals['gt'].unsqueeze(1)

            # evaluate
            if i < num_folders:
                for idx in range(visuals['result'].size(1)):
                    result = visuals['result'][0, idx, :, :, :]
                    result_img = tensor2img([result])  # uint8, bgr
                    metric_data['img'] = result_img
                    if 'gt' in visuals:
                        gt = visuals['gt'][0, idx, :, :, :]
                        gt_img = tensor2img([gt])  # uint8, bgr
                        metric_data['img2'] = gt_img

                    if save_img:
                        if self.opt['is_train']:
                            raise NotImplementedError('saving image is not supported during training.')
                        else:
                            if self.center_frame_only:  # vimeo-90k
                                clip_ = val_data['lq_path'].split('/')[-3]
                                seq_ = val_data['lq_path'].split('/')[-2]
                                name_ = f'{clip_}_{seq_}'
                                img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder,
                                                    f"{name_}_{self.opt['name']}.png")
                            else:  # others
                                img_path = osp.join(self.opt['path']['visualization'], dataset_name, folder,
                                                    f"{idx:08d}_{self.opt['name']}.png")
                            # image name only for REDS dataset
                        imwrite(result_img, img_path)

                    # calculate metrics
                    if with_metrics:
                        for metric_idx, opt_ in enumerate(self.opt['val']['metrics'].values()):
                            result = calculate_metric(metric_data, opt_)
                            self.metric_results[folder][idx, metric_idx] += result

                # progress bar
                if rank == 0:
                    for _ in range(world_size):
                        pbar.update(1)
                        pbar.set_description(f'Folder: {folder}')

        if rank == 0:
            pbar.close()

        if with_metrics:
            if self.opt['dist']:
                # collect data among GPUs
                for _, tensor in self.metric_results.items():
                    dist.reduce(tensor, 0)
                dist.barrier()

            if rank == 0:
                self._log_validation_metric_values(current_iter, dataset_name, tb_logger)

    def test(self):
        n = self.lq.size(1)
        self.net_g.eval()

        flip_seq = self.opt['val'].get('flip_seq', False)
        self.center_frame_only = self.opt['val'].get('center_frame_only', False)

        if flip_seq:
            self.lq = torch.cat([self.lq, self.lq.flip(1)], dim=1)

        with torch.no_grad():
            self.output = self.net_g(self.lq)

        if flip_seq:
            output_1 = self.output[:, :n, :, :, :]
            output_2 = self.output[:, n:, :, :, :].flip(1)
            self.output = 0.5 * (output_1 + output_2)

        if self.center_frame_only:
            self.output = self.output[:, n // 2, :, :, :]

        self.net_g.train()