File size: 29,527 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
// modify from
// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda.c

#include <torch/extension.h>
#include <ATen/DeviceGuard.h>

#include <cmath>
#include <vector>

void deformable_im2col(const at::Tensor data_im, const at::Tensor data_offset,

                       const int channels, const int height, const int width,

                       const int ksize_h, const int ksize_w, const int pad_h,

                       const int pad_w, const int stride_h, const int stride_w,

                       const int dilation_h, const int dilation_w,

                       const int parallel_imgs, const int deformable_group,

                       at::Tensor data_col);

void deformable_col2im(const at::Tensor data_col, const at::Tensor data_offset,

                       const int channels, const int height, const int width,

                       const int ksize_h, const int ksize_w, const int pad_h,

                       const int pad_w, const int stride_h, const int stride_w,

                       const int dilation_h, const int dilation_w,

                       const int parallel_imgs, const int deformable_group,

                       at::Tensor grad_im);

void deformable_col2im_coord(

    const at::Tensor data_col, const at::Tensor data_im,

    const at::Tensor data_offset, const int channels, const int height,

    const int width, const int ksize_h, const int ksize_w, const int pad_h,

    const int pad_w, const int stride_h, const int stride_w,

    const int dilation_h, const int dilation_w, const int parallel_imgs,

    const int deformable_group, at::Tensor grad_offset);

void modulated_deformable_im2col_cuda(

    const at::Tensor data_im, const at::Tensor data_offset,

    const at::Tensor data_mask, const int batch_size, const int channels,

    const int height_im, const int width_im, const int height_col,

    const int width_col, const int kernel_h, const int kenerl_w,

    const int pad_h, const int pad_w, const int stride_h, const int stride_w,

    const int dilation_h, const int dilation_w, const int deformable_group,

    at::Tensor data_col);

void modulated_deformable_col2im_cuda(

    const at::Tensor data_col, const at::Tensor data_offset,

    const at::Tensor data_mask, const int batch_size, const int channels,

    const int height_im, const int width_im, const int height_col,

    const int width_col, const int kernel_h, const int kenerl_w,

    const int pad_h, const int pad_w, const int stride_h, const int stride_w,

    const int dilation_h, const int dilation_w, const int deformable_group,

    at::Tensor grad_im);

void modulated_deformable_col2im_coord_cuda(

    const at::Tensor data_col, const at::Tensor data_im,

    const at::Tensor data_offset, const at::Tensor data_mask,

    const int batch_size, const int channels, const int height_im,

    const int width_im, const int height_col, const int width_col,

    const int kernel_h, const int kenerl_w, const int pad_h, const int pad_w,

    const int stride_h, const int stride_w, const int dilation_h,

    const int dilation_w, const int deformable_group, at::Tensor grad_offset,

    at::Tensor grad_mask);

void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput,

                 at::Tensor weight, int kH, int kW, int dH, int dW, int padH,

                 int padW, int dilationH, int dilationW, int group,

                 int deformable_group) {
  TORCH_CHECK(weight.ndimension() == 4,
           "4D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, "
           "but got: %s",
           weight.ndimension());

  TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");

  TORCH_CHECK(kW > 0 && kH > 0,
           "kernel size should be greater than zero, but got kH: %d kW: %d", kH,
           kW);

  TORCH_CHECK((weight.size(2) == kH && weight.size(3) == kW),
           "kernel size should be consistent with weight, ",
           "but got kH: %d kW: %d weight.size(2): %d, weight.size(3): %d", kH,
           kW, weight.size(2), weight.size(3));

  TORCH_CHECK(dW > 0 && dH > 0,
           "stride should be greater than zero, but got dH: %d dW: %d", dH, dW);

  TORCH_CHECK(
      dilationW > 0 && dilationH > 0,
      "dilation should be greater than 0, but got dilationH: %d dilationW: %d",
      dilationH, dilationW);

  int ndim = input.ndimension();
  int dimf = 0;
  int dimh = 1;
  int dimw = 2;

  if (ndim == 4) {
    dimf++;
    dimh++;
    dimw++;
  }

  TORCH_CHECK(ndim == 3 || ndim == 4, "3D or 4D input tensor expected but got: %s",
           ndim);

  long nInputPlane = weight.size(1) * group;
  long inputHeight = input.size(dimh);
  long inputWidth = input.size(dimw);
  long nOutputPlane = weight.size(0);
  long outputHeight =
      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
  long outputWidth =
      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;

  TORCH_CHECK(nInputPlane % deformable_group == 0,
           "input channels must divide deformable group size");

  if (outputWidth < 1 || outputHeight < 1)
    AT_ERROR(
        "Given input size: (%ld x %ld x %ld). "
        "Calculated output size: (%ld x %ld x %ld). Output size is too small",
        nInputPlane, inputHeight, inputWidth, nOutputPlane, outputHeight,
        outputWidth);

  TORCH_CHECK(input.size(1) == nInputPlane,
           "invalid number of input planes, expected: %d, but got: %d",
           nInputPlane, input.size(1));

  TORCH_CHECK((inputHeight >= kH && inputWidth >= kW),
           "input image is smaller than kernel");

  TORCH_CHECK((offset.size(2) == outputHeight && offset.size(3) == outputWidth),
           "invalid spatial size of offset, expected height: %d width: %d, but "
           "got height: %d width: %d",
           outputHeight, outputWidth, offset.size(2), offset.size(3));

  TORCH_CHECK((offset.size(1) == deformable_group * 2 * kH * kW),
           "invalid number of channels of offset");

  if (gradOutput != NULL) {
    TORCH_CHECK(gradOutput->size(dimf) == nOutputPlane,
             "invalid number of gradOutput planes, expected: %d, but got: %d",
             nOutputPlane, gradOutput->size(dimf));

    TORCH_CHECK((gradOutput->size(dimh) == outputHeight &&
              gradOutput->size(dimw) == outputWidth),
             "invalid size of gradOutput, expected height: %d width: %d , but "
             "got height: %d width: %d",
             outputHeight, outputWidth, gradOutput->size(dimh),
             gradOutput->size(dimw));
  }
}

int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight,

                             at::Tensor offset, at::Tensor output,

                             at::Tensor columns, at::Tensor ones, int kW,

                             int kH, int dW, int dH, int padW, int padH,

                             int dilationW, int dilationH, int group,

                             int deformable_group, int im2col_step) {
  // todo: resize columns to include im2col: done
  // todo: add im2col_step as input
  // todo: add new output buffer and transpose it to output (or directly
  // transpose output) todo: possibly change data indexing because of
  // parallel_imgs

  shape_check(input, offset, NULL, weight, kH, kW, dH, dW, padH, padW,
              dilationH, dilationW, group, deformable_group);
  at::DeviceGuard guard(input.device());

  input = input.contiguous();
  offset = offset.contiguous();
  weight = weight.contiguous();

  int batch = 1;
  if (input.ndimension() == 3) {
    // Force batch
    batch = 0;
    input.unsqueeze_(0);
    offset.unsqueeze_(0);
  }

  // todo: assert batchsize dividable by im2col_step

  long batchSize = input.size(0);
  long nInputPlane = input.size(1);
  long inputHeight = input.size(2);
  long inputWidth = input.size(3);

  long nOutputPlane = weight.size(0);

  long outputWidth =
      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
  long outputHeight =
      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;

  TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");

  output = output.view({batchSize / im2col_step, im2col_step, nOutputPlane,
                        outputHeight, outputWidth});
  columns = at::zeros(
      {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
      input.options());

  if (ones.ndimension() != 2 ||
      ones.size(0) * ones.size(1) < outputHeight * outputWidth) {
    ones = at::ones({outputHeight, outputWidth}, input.options());
  }

  input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
                      inputHeight, inputWidth});
  offset =
      offset.view({batchSize / im2col_step, im2col_step,
                   deformable_group * 2 * kH * kW, outputHeight, outputWidth});

  at::Tensor output_buffer =
      at::zeros({batchSize / im2col_step, nOutputPlane,
                 im2col_step * outputHeight, outputWidth},
                output.options());

  output_buffer = output_buffer.view(
      {output_buffer.size(0), group, output_buffer.size(1) / group,
       output_buffer.size(2), output_buffer.size(3)});

  for (int elt = 0; elt < batchSize / im2col_step; elt++) {
    deformable_im2col(input[elt], offset[elt], nInputPlane, inputHeight,
                      inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
                      dilationW, im2col_step, deformable_group, columns);

    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    weight = weight.view({group, weight.size(0) / group, weight.size(1),
                          weight.size(2), weight.size(3)});

    for (int g = 0; g < group; g++) {
      output_buffer[elt][g] = output_buffer[elt][g]
                                  .flatten(1)
                                  .addmm_(weight[g].flatten(1), columns[g])
                                  .view_as(output_buffer[elt][g]);
    }
  }

  output_buffer = output_buffer.view(
      {output_buffer.size(0), output_buffer.size(1) * output_buffer.size(2),
       output_buffer.size(3), output_buffer.size(4)});

  output_buffer = output_buffer.view({batchSize / im2col_step, nOutputPlane,
                                      im2col_step, outputHeight, outputWidth});
  output_buffer.transpose_(1, 2);
  output.copy_(output_buffer);
  output = output.view({batchSize, nOutputPlane, outputHeight, outputWidth});

  input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
  offset = offset.view(
      {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});

  if (batch == 0) {
    output = output.view({nOutputPlane, outputHeight, outputWidth});
    input = input.view({nInputPlane, inputHeight, inputWidth});
    offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
  }

  return 1;
}

int deform_conv_backward_input_cuda(at::Tensor input, at::Tensor offset,

                                    at::Tensor gradOutput, at::Tensor gradInput,

                                    at::Tensor gradOffset, at::Tensor weight,

                                    at::Tensor columns, int kW, int kH, int dW,

                                    int dH, int padW, int padH, int dilationW,

                                    int dilationH, int group,

                                    int deformable_group, int im2col_step) {
  shape_check(input, offset, &gradOutput, weight, kH, kW, dH, dW, padH, padW,
              dilationH, dilationW, group, deformable_group);
  at::DeviceGuard guard(input.device());

  input = input.contiguous();
  offset = offset.contiguous();
  gradOutput = gradOutput.contiguous();
  weight = weight.contiguous();

  int batch = 1;

  if (input.ndimension() == 3) {
    // Force batch
    batch = 0;
    input = input.view({1, input.size(0), input.size(1), input.size(2)});
    offset = offset.view({1, offset.size(0), offset.size(1), offset.size(2)});
    gradOutput = gradOutput.view(
        {1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
  }

  long batchSize = input.size(0);
  long nInputPlane = input.size(1);
  long inputHeight = input.size(2);
  long inputWidth = input.size(3);

  long nOutputPlane = weight.size(0);

  long outputWidth =
      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
  long outputHeight =
      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;

  TORCH_CHECK((offset.size(0) == batchSize), 3, "invalid batch size of offset");
  gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
  columns = at::zeros(
      {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
      input.options());

  // change order of grad output
  gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step,
                                nOutputPlane, outputHeight, outputWidth});
  gradOutput.transpose_(1, 2);

  gradInput = gradInput.view({batchSize / im2col_step, im2col_step, nInputPlane,
                              inputHeight, inputWidth});
  input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
                      inputHeight, inputWidth});
  gradOffset = gradOffset.view({batchSize / im2col_step, im2col_step,
                                deformable_group * 2 * kH * kW, outputHeight,
                                outputWidth});
  offset =
      offset.view({batchSize / im2col_step, im2col_step,
                   deformable_group * 2 * kH * kW, outputHeight, outputWidth});

  for (int elt = 0; elt < batchSize / im2col_step; elt++) {
    // divide into groups
    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    weight = weight.view({group, weight.size(0) / group, weight.size(1),
                          weight.size(2), weight.size(3)});
    gradOutput = gradOutput.view(
        {gradOutput.size(0), group, gradOutput.size(1) / group,
         gradOutput.size(2), gradOutput.size(3), gradOutput.size(4)});

    for (int g = 0; g < group; g++) {
      columns[g] = columns[g].addmm_(weight[g].flatten(1).transpose(0, 1),
                                     gradOutput[elt][g].flatten(1), 0.0f, 1.0f);
    }

    columns =
        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    gradOutput = gradOutput.view(
        {gradOutput.size(0), gradOutput.size(1) * gradOutput.size(2),
         gradOutput.size(3), gradOutput.size(4), gradOutput.size(5)});

    deformable_col2im_coord(columns, input[elt], offset[elt], nInputPlane,
                            inputHeight, inputWidth, kH, kW, padH, padW, dH, dW,
                            dilationH, dilationW, im2col_step, deformable_group,
                            gradOffset[elt]);

    deformable_col2im(columns, offset[elt], nInputPlane, inputHeight,
                      inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
                      dilationW, im2col_step, deformable_group, gradInput[elt]);
  }

  gradOutput.transpose_(1, 2);
  gradOutput =
      gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});

  gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
  input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
  gradOffset = gradOffset.view(
      {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
  offset = offset.view(
      {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});

  if (batch == 0) {
    gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
    input = input.view({nInputPlane, inputHeight, inputWidth});
    gradInput = gradInput.view({nInputPlane, inputHeight, inputWidth});
    offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
    gradOffset =
        gradOffset.view({offset.size(1), offset.size(2), offset.size(3)});
  }

  return 1;
}

int deform_conv_backward_parameters_cuda(

    at::Tensor input, at::Tensor offset, at::Tensor gradOutput,

    at::Tensor gradWeight,  // at::Tensor gradBias,

    at::Tensor columns, at::Tensor ones, int kW, int kH, int dW, int dH,

    int padW, int padH, int dilationW, int dilationH, int group,

    int deformable_group, float scale, int im2col_step) {
  // todo: transpose and reshape outGrad
  // todo: reshape columns
  // todo: add im2col_step as input

  shape_check(input, offset, &gradOutput, gradWeight, kH, kW, dH, dW, padH,
              padW, dilationH, dilationW, group, deformable_group);
  at::DeviceGuard guard(input.device());

  input = input.contiguous();
  offset = offset.contiguous();
  gradOutput = gradOutput.contiguous();

  int batch = 1;

  if (input.ndimension() == 3) {
    // Force batch
    batch = 0;
    input = input.view(
        at::IntList({1, input.size(0), input.size(1), input.size(2)}));
    gradOutput = gradOutput.view(
        {1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
  }

  long batchSize = input.size(0);
  long nInputPlane = input.size(1);
  long inputHeight = input.size(2);
  long inputWidth = input.size(3);

  long nOutputPlane = gradWeight.size(0);

  long outputWidth =
      (inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
  long outputHeight =
      (inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;

  TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");

  columns = at::zeros(
      {nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
      input.options());

  gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step,
                                nOutputPlane, outputHeight, outputWidth});
  gradOutput.transpose_(1, 2);

  at::Tensor gradOutputBuffer = at::zeros_like(gradOutput);
  gradOutputBuffer =
      gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane, im2col_step,
                             outputHeight, outputWidth});
  gradOutputBuffer.copy_(gradOutput);
  gradOutputBuffer =
      gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane,
                             im2col_step * outputHeight, outputWidth});

  gradOutput.transpose_(1, 2);
  gradOutput =
      gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});

  input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
                      inputHeight, inputWidth});
  offset =
      offset.view({batchSize / im2col_step, im2col_step,
                   deformable_group * 2 * kH * kW, outputHeight, outputWidth});

  for (int elt = 0; elt < batchSize / im2col_step; elt++) {
    deformable_im2col(input[elt], offset[elt], nInputPlane, inputHeight,
                      inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
                      dilationW, im2col_step, deformable_group, columns);

    // divide into group
    gradOutputBuffer = gradOutputBuffer.view(
        {gradOutputBuffer.size(0), group, gradOutputBuffer.size(1) / group,
         gradOutputBuffer.size(2), gradOutputBuffer.size(3)});
    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    gradWeight =
        gradWeight.view({group, gradWeight.size(0) / group, gradWeight.size(1),
                         gradWeight.size(2), gradWeight.size(3)});

    for (int g = 0; g < group; g++) {
      gradWeight[g] = gradWeight[g]
                          .flatten(1)
                          .addmm_(gradOutputBuffer[elt][g].flatten(1),
                                  columns[g].transpose(1, 0), 1.0, scale)
                          .view_as(gradWeight[g]);
    }
    gradOutputBuffer = gradOutputBuffer.view(
        {gradOutputBuffer.size(0),
         gradOutputBuffer.size(1) * gradOutputBuffer.size(2),
         gradOutputBuffer.size(3), gradOutputBuffer.size(4)});
    columns =
        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    gradWeight = gradWeight.view({gradWeight.size(0) * gradWeight.size(1),
                                  gradWeight.size(2), gradWeight.size(3),
                                  gradWeight.size(4)});
  }

  input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
  offset = offset.view(
      {batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});

  if (batch == 0) {
    gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
    input = input.view({nInputPlane, inputHeight, inputWidth});
  }

  return 1;
}

void modulated_deform_conv_cuda_forward(

    at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,

    at::Tensor offset, at::Tensor mask, at::Tensor output, at::Tensor columns,

    int kernel_h, int kernel_w, const int stride_h, const int stride_w,

    const int pad_h, const int pad_w, const int dilation_h,

    const int dilation_w, const int group, const int deformable_group,

    const bool with_bias) {
  TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
  TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
  at::DeviceGuard guard(input.device());

  const int batch = input.size(0);
  const int channels = input.size(1);
  const int height = input.size(2);
  const int width = input.size(3);

  const int channels_out = weight.size(0);
  const int channels_kernel = weight.size(1);
  const int kernel_h_ = weight.size(2);
  const int kernel_w_ = weight.size(3);

  if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
    AT_ERROR("Input shape and kernel shape won't match: (%d x %d vs %d x %d).",
             kernel_h_, kernel_w, kernel_h_, kernel_w_);
  if (channels != channels_kernel * group)
    AT_ERROR("Input shape and kernel channels won't match: (%d vs %d).",
             channels, channels_kernel * group);

  const int height_out =
      (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
  const int width_out =
      (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;

  if (ones.ndimension() != 2 ||
      ones.size(0) * ones.size(1) < height_out * width_out) {
    // Resize plane and fill with ones...
    ones = at::ones({height_out, width_out}, input.options());
  }

  // resize output
  output = output.view({batch, channels_out, height_out, width_out}).zero_();
  // resize temporary columns
  columns =
      at::zeros({channels * kernel_h * kernel_w, 1 * height_out * width_out},
                input.options());

  output = output.view({output.size(0), group, output.size(1) / group,
                        output.size(2), output.size(3)});

  for (int b = 0; b < batch; b++) {
    modulated_deformable_im2col_cuda(
        input[b], offset[b], mask[b], 1, channels, height, width, height_out,
        width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
        dilation_h, dilation_w, deformable_group, columns);

    // divide into group
    weight = weight.view({group, weight.size(0) / group, weight.size(1),
                          weight.size(2), weight.size(3)});
    columns = columns.view({group, columns.size(0) / group, columns.size(1)});

    for (int g = 0; g < group; g++) {
      output[b][g] = output[b][g]
                         .flatten(1)
                         .addmm_(weight[g].flatten(1), columns[g])
                         .view_as(output[b][g]);
    }

    weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
                          weight.size(3), weight.size(4)});
    columns =
        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
  }

  output = output.view({output.size(0), output.size(1) * output.size(2),
                        output.size(3), output.size(4)});

  if (with_bias) {
    output += bias.view({1, bias.size(0), 1, 1});
  }
}

void modulated_deform_conv_cuda_backward(

    at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,

    at::Tensor offset, at::Tensor mask, at::Tensor columns,

    at::Tensor grad_input, at::Tensor grad_weight, at::Tensor grad_bias,

    at::Tensor grad_offset, at::Tensor grad_mask, at::Tensor grad_output,

    int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,

    int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,

    const bool with_bias) {
  TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
  TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
  at::DeviceGuard guard(input.device());

  const int batch = input.size(0);
  const int channels = input.size(1);
  const int height = input.size(2);
  const int width = input.size(3);

  const int channels_kernel = weight.size(1);
  const int kernel_h_ = weight.size(2);
  const int kernel_w_ = weight.size(3);
  if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
    AT_ERROR("Input shape and kernel shape won't match: (%d x %d vs %d x %d).",
             kernel_h_, kernel_w, kernel_h_, kernel_w_);
  if (channels != channels_kernel * group)
    AT_ERROR("Input shape and kernel channels won't match: (%d vs %d).",
             channels, channels_kernel * group);

  const int height_out =
      (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
  const int width_out =
      (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;

  if (ones.ndimension() != 2 ||
      ones.size(0) * ones.size(1) < height_out * width_out) {
    // Resize plane and fill with ones...
    ones = at::ones({height_out, width_out}, input.options());
  }

  grad_input = grad_input.view({batch, channels, height, width});
  columns = at::zeros({channels * kernel_h * kernel_w, height_out * width_out},
                      input.options());

  grad_output =
      grad_output.view({grad_output.size(0), group, grad_output.size(1) / group,
                        grad_output.size(2), grad_output.size(3)});

  for (int b = 0; b < batch; b++) {
    // divide int group
    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    weight = weight.view({group, weight.size(0) / group, weight.size(1),
                          weight.size(2), weight.size(3)});

    for (int g = 0; g < group; g++) {
      columns[g].addmm_(weight[g].flatten(1).transpose(0, 1),
                        grad_output[b][g].flatten(1), 0.0f, 1.0f);
    }

    columns =
        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
                          weight.size(3), weight.size(4)});

    // gradient w.r.t. input coordinate data
    modulated_deformable_col2im_coord_cuda(
        columns, input[b], offset[b], mask[b], 1, channels, height, width,
        height_out, width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h,
        stride_w, dilation_h, dilation_w, deformable_group, grad_offset[b],
        grad_mask[b]);
    // gradient w.r.t. input data
    modulated_deformable_col2im_cuda(
        columns, offset[b], mask[b], 1, channels, height, width, height_out,
        width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
        dilation_h, dilation_w, deformable_group, grad_input[b]);

    // gradient w.r.t. weight, dWeight should accumulate across the batch and
    // group
    modulated_deformable_im2col_cuda(
        input[b], offset[b], mask[b], 1, channels, height, width, height_out,
        width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
        dilation_h, dilation_w, deformable_group, columns);

    columns = columns.view({group, columns.size(0) / group, columns.size(1)});
    grad_weight = grad_weight.view({group, grad_weight.size(0) / group,
                                    grad_weight.size(1), grad_weight.size(2),
                                    grad_weight.size(3)});
    if (with_bias)
      grad_bias = grad_bias.view({group, grad_bias.size(0) / group});

    for (int g = 0; g < group; g++) {
      grad_weight[g] =
          grad_weight[g]
              .flatten(1)
              .addmm_(grad_output[b][g].flatten(1), columns[g].transpose(0, 1))
              .view_as(grad_weight[g]);
      if (with_bias) {
        grad_bias[g] =
            grad_bias[g]
                .view({-1, 1})
                .addmm_(grad_output[b][g].flatten(1), ones.view({-1, 1}))
                .view(-1);
      }
    }

    columns =
        columns.view({columns.size(0) * columns.size(1), columns.size(2)});
    grad_weight = grad_weight.view({grad_weight.size(0) * grad_weight.size(1),
                                    grad_weight.size(2), grad_weight.size(3),
                                    grad_weight.size(4)});
    if (with_bias)
      grad_bias = grad_bias.view({grad_bias.size(0) * grad_bias.size(1)});
  }
  grad_output = grad_output.view({grad_output.size(0) * grad_output.size(1),
                                  grad_output.size(2), grad_output.size(3),
                                  grad_output.size(4)});
}